

TY 2022 GENERAL REASSESSMENT PROGRAM APPRAISER REFERENCE MATERIALS MARCH 2021

Disclaimer:

This publication represents a selected compilation of materials developed and used by the Real Property Assessment Division of the Office of Tax and Revenue during the 2022 revaluation of real property in the District of Columbia. As such, it does not purport to be an exhaustive collection of all assessment administration documents and materials. Its primary purpose is designed to be a quick reference guide for the real property appraiser in their day-to-day work activities.
Please feel free to call or email your comments or suggestions using the contact details below. Thank you.

Standards \& Services Unit

Real Property Assessment Division
$11014^{\text {th }}$ Street, SW, Suite W550
Washington, DC 20024
Phone: (202) 442-6643
Email: assessmentdivision@dc.gov

TY 2022 Appraiser Reference Materials

Table of Contents

TOPIC PAGE
Chief Appraiser's Memo: TY 2022 Reassessment 1
Explanation of Residential, Condo and Co-op Valuation Methods 3
Valuation Review Process 7
Market Approach to Land Valuation in Costed Neighborhood 11
Land Rate Development Example 12
Table: Residential Base Land Rates by Neighborhood 13
Graph: Residential Land Size Curves 14
Graph: Condominium Size Curve 15
Vision CAMA Residential Valuation Process 16
Vision CAMA Commercial Valuation Process 47
Vision CAMA Income Approach Valuation Process 74
Guidelines for Non-Market Multifamily(Apartment) Assessments 90
Vision CAMA Income Approach Appraisal PRC Example 94
TY 2022 CAMA Guides: Residential, Commercial Rates \& Adjustments 97
Table: Cost Occupancy / Use Code 101
Table: Use Codes 103
Table: TY 2022 Base Cost Rates 107
Table: RPTA TY 2022 Base Change Reports 112
Table: Parcel Count per Neighborhood 117
Preliminary TY 2022 Performance Report 118
Sales Ratio Report Using Current TY 2021 \& Proposed TY 2022 Values 119
Map: Residential Change by Wards 127
Map: Single-Family Change by Neighborhood 128
Map: All Residential Change by Neighborhood 139
Map: Commercial Change by Wards 130
Map: Commercial Change by Neighborhood 131
Map: Assessment Neighborhoods and Wards 132

OFFICE OF TAX AND REVENUE

REAL PROPERTY TAX ADMINISTRATION

INTER OFFICE MEMORANDUM

Dear Colleagues:

It is an understatement that many challenges marked the year 2020 that complicated our duties to the District of Columbia. Primarily, the COVID-19 pandemic ravaged the entire globe, and still on-going, attempted to be a significant roadblock to the Tax Year 2022 reassessment. However, with great pleasure and a deep sense of gratitude, I report to you the completion of the TY 2022 reassessment for ad valorem taxes of all real properties in the District of Columbia in time and for the first time virtually. On January 1, 2021, we established a fair market value for a total of 205,502 parcels.

These parcels include 190,774 residential properties, 9,344 commercial properties, and 5,384 exempt properties. This parcel count represents a 1.14% increase in parcel count from the last reassessment. The result of TY 2022 reassessment compared to values of TY 2021 assessment is summarized in the table below:

Property Type	TY 2021 Value	TY 2022 Value	Base Change [\$]	\% Change
Residential [Class1]	$\$ 140,751,240,183$	$\$ 143,087,086,925$	$\$ 2,335,846,742$	1.66%
Commercial [Class 2]	$\$ 110,288,590,841$	$\$ 101,764,748,946$	$(\$ 8,523,841,895)$	-7.73%
Total Taxable	$\mathbf{\$ 2 5 1 , 0 3 9 , 8 3 1 , 0 2 4}$	$\mathbf{\$ 2 4 4 , 8 5 1 , 8 3 5 , 8 7 1}$	$(\$ 6,187,995,153)$	-2.46%
Exempt	$\$ 30,155,190,630$	$\$ 29,786,785,708$	$(\$ 368,404,922)$	-1.22%
All Properties	$\mathbf{\$ 2 8 1 , 1 9 5 , 0 2 1 , 6 5 4}$	$\mathbf{\$ 2 7 4 , 6 3 8 , 6 2 1 , 5 7 9}$	$(\$ 6,556,400,075)$	-2.33%

The District of Columbia real estate market experienced a decline in overall market value after multiple years of steady value growth. Only the residential property saw an increase. However, the 1.66% value increase for residential properties is a 159-basis point decrease from TY 2021 assessment. The sharp decline in commercial property value erased the past three years' commercial property value's slow growth. The chart below represents average year-over-year assessment value changes in the prior three years and the current year.

We have once again demonstrated our professionalism and unwavering commitment to fulfilling our mandate in providing the District citizens with high-quality service, as we strive to be the best-in-class organization.

On December 7, 2020, the Modernized Real Property Tax System (MRPTS) rolled out. The technology concluded the final phase of the Modern Integrated Tax System (MITS) of the OCFO at large. I want to take this opportunity to thank all of you, especially those that worked directly with the development team during the development, testing, and rollout phases of the project. You completed the tasks in combination with your regular work assignment while working remotely. The accomplishment is both remarkable and commendable; please accept my sincere gratitude.

MITS is unique; the District is the only jurisdiction in the continental United States with this system. With any new technology, functional corrections or enhancements typically follow rollout. I encourage the exercise of patience as the development team provides the needed fixes to perfect the system. Also, adequate and necessary training is available on an on-going basis to help us become proficient with the system in doing our jobs.

In conclusion, it has been more than a year since we transitioned into working in a virtual environment. Still, we have not allowed the new working condition to diminish our stellar customer service, hinder creativity, or dampen our spirit. The District of Columbia is blessed to have such a talented group of professionals.

Stay well and stay safe.

Explanation of Residential Market-oriented Cost Method

Note: The market-oriented cost approach to valuation is further explained and illustrated in the document, Vision Residential Valuation Process.

The market-oriented cost approach involved the following:

1. Extracting the CAMA data from approximately 11,750 qualified sales and importing it into SPSS.
2. Building a preliminary regression model that reflects the variables of the CAMA cost approach.
3. Reviewing the results of the preliminary regression to identify candidate market areas where the data was such to allow for successful regression analysis.
4. Eliminating outliers in the candidate areas to better ensure accuracy of the regression results.
5. Establishing time adjustment factors to analyze sale prices as of a specific point in time. The city was divided into 4 major market areas for time adjusting sale prices. Market data indicated monthly time adjustment factors over 33 months (1/1/2018 through 9/30/2020) as follows:

	$1 / 1 / 18-$ $12 / 31 / 18$	$1 / 1 / 19-$ $12 / 31 / 19$	$1 / 1 / 20-$ $9 / 30 / 20$
"Southeast" Neighborhoods $(2,3,16,18,22,28,32,33,43)$	$0.50 \% / \mathrm{mo}$	$0.20 \% / \mathrm{mo}$	$0.80 \% / \mathrm{mo}$
"Northeast" Neighborhoods $(5,6,7,12,14,15,17,19,31,35,36,42,47,48,49,51,52,56,66)$	$0.30 \% / \mathrm{mo}$	$0.20 \% / \mathrm{mo}$	$0.70 \% / \mathrm{mo}$
"Northwest" Neighborhoods $(1,4,8,11,13,21,23,24,25,26,27,29,30,34,37,38,41,50,53,54,55)$	$0.20 \% / \mathrm{mo}$	$0.20 \% / \mathrm{mo}$	$0.30 \% / \mathrm{mo}$
"Downtown" Neighborhoods $(9,10,20,39,40,46)$	$0.30 \% / \mathrm{mo}$	$0.30 \% / \mathrm{mo}$	$0.30 \% / \mathrm{mo}$

6. Building a final regression model, using the time-adjusted sale price as the dependant variable.
7. Calibrating that model using non-linear multiple regression. Variables were included to extract land values from the market.
8. Reviewing the regression predicted values and removing extreme outliers.
9. Examining the predicted-values-to-time-adjusted-sale-price ratios for equitability with respect to lot size, building area, age, use, grade, and location.
10. Entering the coefficients indicated by the regression analysis back into the CAMA program's cost model.
11. Applying the cost model in CAMA and reviewing the resulting values to ensure they agreed with the predicted values produced by the regression.
12. Performing sales analysis to determine if acceptable levels of assessment were achieved and adjusting rates, as necessary.
13. Applying model to inventory and producing old-to-new (outlier) reports and percent change detail analysis reports for appraiser review.
14. Incorporating oversight of the computer aided procedure by our professional staff cited in the Valuation Review Process. All projected market value changes are submitted to the staff for their review, refinement, and adjustments.

Explanation of Residential Condominium Valuation Methods

Regression:

The sales comparison approach using multiple regression analysis involved the following:

1. Extracting the CAMA data of qualified sales and importing it into SPSS.
2. Reviewing data to determine what regimes were candidates for regression analysis. As a rule, regimes could be valued using regression where the physical data attributes were complete and adequate sales data existed. Regimes without adequate sales, but with complete data, could be clustered with regimes having similar profiles to allow regression to be used.
3. Exploring the data to determine what variables would likely contribute to the model.
4. Building a base model.
5. Reviewing the results of the base model and eliminating outliers in the candidate regimes to better ensure the accuracy of the regression results.
6. Establishing time adjustment factors to analyze sale prices as of a specific point in time.
7. Building a final regression model, using the time-adjusted sale price as the dependant variable.
8. Calibrating that model using multiple regression analysis.
9. Applying the model to the sales, reviewing the predicted values, and removing extreme outliers.
10. Performing sales analysis to determine if acceptable levels of assessment were achieved and adjusting rates, as necessary.
11. Extracting condominium inventory data and importing into SPSS.
12. Applying model to inventory, and exporting the values back to CAMA, allocating 30% of predicted value to land and 70\% of predicted values to improvements.
13. Producing percent change reports for appraiser review.
14. Identifying necessary corrections to data and location adjustments.
15. Repeating process of extracting data, applying model, and exporting back to CAMA to include corrections.

Final Appraiser Review:

At the conclusion of the valuation, several reports are produced showing the results of the reassessment. These reports, reflecting proposed market value changes, are submitted to the assessment staff for their review, refinement, and adjustment in accordance with the processes outlined in the Valuation Review Process document.

The Condominium Regression Model:

ESP $=(393.49$ * 800 * SIZE_ADJ * EFFIC_ADJ * COND_ADJ * VIEW_ADJ * BATH_ADJ + PARK_ADJ) * LOC_ADJ.

Estimated Sale Price (ESP) - the value predicted by the model for the parcel, given the variables in the model, the coefficients of those variables and the attributes of the subject unit.

Base Rate (393.49) - base size rate (constant)
Base Size (800) - base unit size (constant)
Size Adj. - the adjustment for the unit's size being larger or smaller than the base size.
The base unit size is 800 sf. The formula for calculating the size adjustment is:
Unit size up to 2000 sf: (SIZE/800) ${ }^{662432}$
Unit size larger than 2000 sf: (2000/800).662432 * (SIZE/2000).928349
See graph titled Condominium Size Curve.
Efficiency Adj. - if the unit is an efficiency unit, a 0.92 adjustment is applied.
Condition - adjustment for the unit's physical condition
(1) Poor 75
(2) Fair .90
(3) Average $\quad 1.00$
(4) Good 1.07
(5) Very Good 1.16
(6) Excellent 1.23
$\underline{\text { View }}$ - adjustment for the unit's view

(1) Poor	.85
(2) Fair	.93
(3) Average	1.00
(4) Good	1.05
(5) Very Good	1.11
(6) Excellent	1.16

Bath Adj. - adjustment for the unit's number of baths more than one.

$$
\begin{array}{ll}
\text { BATH_ADJ }=1+(((\text { FULLBATH }-1)+(.5 * \text { HALFBATH })) * .08) \\
\text { Example: } & 21 / 2 \text { baths: } 1+(((2-1)+(.5 * 1)) * .08)=1.12 \\
& 3 \text { baths: } 1+(((3-1)+(.5 * 0)) * .08)=1.16
\end{array}
$$

Parking - adjustment for Limited Common Element parking
$\frac{\text { Outdoor }}{12,600} \quad \frac{\text { Covered }}{14,200} \quad \frac{\text { Indoor }}{20,500} \quad$ subject to location adjustment

Location - adjustment for unit's geographic location
Location adjustments were made for neighborhood, sub-neighborhood, cluster of regimes, or unique regime. The actual location adjustment for any unit may be the combination of one or more of those location factors.

Explanation of Cooperative Valuation Method

Cooperatives are a type of residential property. In a cooperative, a corporation owns the property and the shareholders can use the unit or units represented by their shares. In Washington, DC, cooperatives are assessed according to statue by one of three methods. The first method is by calculating the cumulative value of the leasehold interests (by sales). The second method is to treat the project as if it was a condominium project and reduce the value by 30%. After arriving at either of these values, we further reduce the value an additional 35% according to the statue. The third method is available only to Limited Equity Cooperatives.

Limited-equity cooperatives (LEC) are defined in the DC official Code in § 47-802 (11) as, "one required by a government agency or non-profit to limit the resale price of membership shares to keep the housing affordable for low and moderate income buyers." The assessed value of the improved real property owned by an LEC is the lesser previously described approaches or the annual amount residents pay in carrying charges (excluding subsidies), divided by an appropriate capitalization rate as determined by the Office of Tax and Revenue (OTR).

For tax year 2022, we reviewed all the complexes with sales information and calculated the sales prices per square foot taking into consideration remodeling and renovations from building permits and information from listings. Sale information is collected from the Recorder of Deeds (Transfer of Economic Interest Tax Return Cooperative Only forms and the Multiple Listing Service). Only minor time adjustments were deemed necessary for this period. For previous years matched pairs sales were used to calculate the typical percentage increase per month. Multiplying the square footage of the units by the adjusted rates (occasionally they were adjusted for view or parking as sales indicated) would result in the aggregate values which were further reduced for personal property and the result multiplied by 65\% to arrive at the assessment.

In complexes where there were no sales, we treated them as if they were condominiums. To do this we would find a condominium as similar as possible to the subject and use the square foot rate that seemed to be appropriate to the square foot of the units or the estimated square footage. We would adjust the square foot rate if the complexes weren't in similar condition or location. We would multiply the rate times the square footage and reduce the result by 30% and then by 35%. The complexes without sales were typically limited equity coops or very small complexes.

Valuation Review Process

As part of the valuation process, initial assessments for all properties will be estimated and preliminary reports will be generated summarizing the results of the valuation effort. Your review, modification and approval of the proposed assessments indicate that they are representative of the estimated market value.

The Valuation Review Process is designed to allow for a thorough review of the new values for the upcoming tax year before notices are sent to property owners.

The purpose of this review is two-fold. First, it allows us the opportunity to correct any errors that may have occurred in the valuation process before they cause administrative difficulties (i.e. public relations problems, unnecessary appeal activity, and the like). Second, the process provides feedback to the CAMA modeling and calibration process.

The process involves examining all assessments with attention given to the outliers in a relatively short period of time. As such, the appraiser is primarily concernedwith arriving at a reasonable final value estimate for all accounts by focusing attention tothe properties identified or appearing as outliers on the Percent Change Detail Analysis report. Briefly, the process involves the appraiser of record reviewing a selected group of properties in their neighborhood that, on first inspection, appear to be over or under appraised based on previously determined criteria such as sales price, percent change reports, etc. When this review indicates correct values, no records are changed; however, if the value requires modification, the appraiser will update the CAMA record to correct the situation and indicate the resulting value changes on the report. If he/she discovers minor discrepancies in the data, it should be noted and corrected or revisited during another inspection program at the discretion of the appraiser. The purpose of this program is not to engage in a detailed analysis of accounts but rather to expeditiously review outlier accounts to improve our estimate of market value.

NOTE: It is advisable that the appraiser has a solid knowledge of CAMA valuation before proceeding with the review process. Please refer to the most current version of the "CAMA Residential Construction Valuation Guideline." Along with the report entitled "VISION CAMA Valuation," the guideline will serve as a tutorial for the methodology employed within CAMA for valuing residential property.

Following are some general guidelines to consider while conducting review activity.

1. The valuation review process begins with CAMA producing a Percent Change Detail Analysis report for each (sub) neighborhood. The report contains specific detail about all the accounts in the selected (sub) neighborhood. The report includes an "outlier" column. An " X " in the outlier column indicates the property's proposed value increased 10 percentage points or more above the median percent change for the (sub) neighborhood or decreased 3 percentage points or more below the median percent change.
2. The appraiser will examine the Percent Change Detail Analysis report for signs of irregularities or general discrepancies based on their knowledge of their neighborhoods. The review entails several tasks as follows:
A. Review the "A/S Ratio", when present. The ratios are calculated based on sales over a long period of time. Pay attention to sales that occurred during the most recent calendar year. These sales will give a better picture of the most recent assessment/sales ratio reflective of the current market conditions. Where the assessed values are not close to the sales prices, fully examine the record, and consider making appropriate changes. The "VC" flag can be used to indicate that a sale has been previously disqualified, possibly rendering an unusual ratio less meaningful. Additionally, the review of the "VC" code with an unusual ratio may indicate that a previously qualified sale needs to be disqualified.
B. Examine the "Grade" of the accounts. If there is a two or more departure of grade between the account and the typical grade in the (sub) neighborhood, the appraiser may be concerned.
C. Look for extremes in the "Cond" and "\% Good" data. Again, on average, these should be relatively consistent throughout the (sub) neighborhood.

The preferred process to follow when conducting individual reviews of accounts identified as outliers (residential only) is as follows:

1. The appraiser will examine each record that is marked as an outlier on the report. An outlier is typically defined as a property where the proposed value decreased 3 percentage points or more below the median percent change for the (sub) neighborhood or increased 10 percentage points or more above the median percent change for the (sub) neighborhood. The values may be correct or erroneous, and the purpose of this process is to make that determination.
2. The appraiser, exercising his or her professional skill and judgment, first will conduct a "desk review" of each account marked as an outlier on the report. If the value does not seem reasonable perform the following actions:
A. Examine the CAMA record for any missing or incorrectly coded data contained in the Construction Detail.
B. In the Building Summary, check the size of the areas listed for accuracy and reasonableness.
C. Check the Building Cost for correct Effective Area, Special Feature RCN and \% Good. If any are erroneous, examine the details.
D. Examine the Special Features/Amenities and Detached Structures for accuracy.
E. Check the Classification and Land Information for proper size and adjustments.
F. Make use of Pictometry and other available GIS tools available through the Mapping Apps folder.
3. Several results may occur from the desk review:
A. The desk review indicates the value is correct. In this case, note in the column adjacent to the account "OK", your initials and the date.
B. The desk review indicates an erroneous value discovered by examining various reports and records (i.e. Percent Change, CAMA record, etc.). In this case, the appraiser makes the correction in the CAMA record and notes the changes made in red on the report with the new amount, initials and the date.
C. The desk review is inconclusive, and a field inspection is in order.

An example may help illustrate scenario "A", the first situation. Let's say the report indicates an account has jumped 400%, from $\$ 300,000$ to $\$ 1,200,000$! That amount of increase seems erroneous. To determine a possible explanation, the appraiser notices that the propertiesclose to the account have only increased by approximately 20%, the median for the neighborhood. They are like the account in size, grade, andcondition, but their prior year's value was $\$ 900,000$, while the outlier was only $\$ 300,000$.The appraiser would be safe to conclude that the account was grossly under-assessed last year. The low "old" value caused the large increase in value, not an over-assessed new value. To complete the desk review, the appraiser notes on the report, "OK", his/her initials and the date.

Scenario " B ", the second situation, may find the appraiser reviewing an account that also appears to be over-assessed based on the large increase from old to new value. The appraiser again reviews the account in context to other (sub) neighborhood properties. The appraiser discovers that most of the data about the account is like the other properties - same use code, similar size, percent good, etc. However, where most of the properties are listed at Grade 4, the account is Grade 7. This would help explain thelikelihood that the account is over-assessed. The appraiser would make the change to the grade in the CAMA system, note the new value, and document the change in red on the report by writing the new value, his/her initials and the date in the right margin next to the account.

The last scenario, "C", results when the appraiser cannot immediately explain the reason an account appears as an outlier. He/she should set aside accounts that will require field inspection and at a point, go to the field for inspection. Upon conclusion of the inspection, the appraiser will document the results in a similar manner to the desk reviews. The actual schedule for fieldwork will vary and will be coordinated by the appraiser and his/her supervisor.

Records Retention: Percent Change Detail Analysis reports (residential, residential condominium, commercial) are to be retained for two years, so that the current and proposed years are readily available for review. The retained reports will reflect all necessary dates and initials, indicating the required review and approval. The supervisor for each unit will be responsible for ensuring compliance with the review process within their unit, and for the retention of their unit's reports for the appropriate time period. Reports may be discarded when they are no longer the current or proposed year. For example, upon the completion of the tax year (TY) 2022 revaluation, the TY 2020 reports may be discarded, and the reports from TY 2021 (current) and TY 2022 (proposed) must be on file.

Assessment Roll and Property Owner Notification

Upon completion of the annual reassessment and following the detailed final edit by appraisers, the CAMA manager runs a series of edit programs that makes final edits and consistency checks of all accounts. Any problems are returned to appraisers for review or correction. Following corrections, the CAMA Manager completes a final edit and uploads the required information via CAMA extract to the Modernized Integrated Tax System (MITS).

Annual Assessment Notices to notify property owners may be printed from MITS in batch mode, or an extract may be produced for an outside vendor to produce assessment notices.

Market Approach to Land Valuation in Costed Neighborhoods

A non-linear regression model was used to calibrate the residential cost model. It was developed from citywide market analysis of qualified sales. One of the variables calibrated by the model was the land rate. Base land rates were adjusted for location in each subneighborhood. Regression analysis calibrated the land and building components of the model at the same time using the same market data. Additionally, the analysis established four size curves for land area. The four size curves indicate that as lot sizes increase, values also increase. However, with land size curve " 3 " values increase more rapidly with size as compared to land size curve " 2 ". Land size curve " 1 " increases at the smallest rate. In all three cases, land rates decrease as land area increases. Market data supports both curves up to approximately 5 times the standard lot size. However, in application, rates are assumed to continue similar decreases beyond that point. Each sub-neighborhood was assigned to one of the three land size curve groups based upon analysis of the qualified sales data. It is important to keep in mind, that land value is only one component of a number of variables that contribute to a property's sale price and/or estimated market value. In practical terms, it is the combination of all of a property's attributes, nuances in the market, and buyer preference that contribute to the final market value of a property. It is difficult to isolate some of the contributory elements and value them separately with certainty. Nevertheless, it is required in the District of Columbia that land and building values be separated for assessment purposes. Because of this requirement, it is necessary to create land rate tables for use in the District's CAMA product. These rates were developed in the regression analysis referred to above. The results of the analysis are applied to the market-oriented cost model in the Vision CAMA system.

Land is calculated in Vision using the following algorithm:

Area * ((Base Rate * Size Adj) + \$ Special Adj 1 + \$ Special Adj 2) * \% Special Adj 1 * \% Special Adj 2

Where:
Area is the lot size expressed in square feet.
Base Rate is the market-derived rate for each sub-neighborhood.
Size Adj is the market-derived adjustment made for the lot size as it relates to the standard size lot for the sub-neighborhood. The look-up along the size curve is based on the ratio of the subject lot size to the standard lot size.
\% Special Adj is any adjustment present that is expressed and applied as a percentage adjustment to the rate.
\$ Special Adj is any adjustment present that is expressed and applied as a dollar adjustment to the rate.

Land Rate Development Example

A hypothetical example may help illustrate how regression analysis develops the base land rates and subsequent adjustments to the rates. Suppose two properties in a neighborhood were recently sold. The first, comprised of just a house without land, sold for $\$ 400,000$. The second property had the identical house but with a lot of 2,000 square feet (sf.), the typical size for that neighborhood. It sold for $\$ 600,000$. In a process similar to adjusting comparables in the sales comparison approach to value, regression analysis identifies the contributory value of the lot to the second property and sets its value to $\$ 200,000$. The base land rate of $\$ 100$ per sf ($\$ 200,000 / 2,000 \mathrm{sf}$) will be the basis for lot values for all other properties in that (sub)neighborhood.

Sold for \$ 400,000 (no lot)

Next, let us assume another house sells. On this occasion, the house is identical to the previous sale in all respects, except the lot size was 4,000 sf instead of the "standard" (base lot) size of $2,000 \mathrm{sf}$. This house recently sold for $\$ 700,000, \$ 100,000$ more than a property with the standard lot size. The land component of this sale is $\$ 300,000$.

This sale helps develop size adjustments for non-standard lots in the neighborhood. If no adjustment was made to the land rate, the land component of this sale would be $\$ 400,000$ $(4,000 \mathrm{sf} * \$ 100)$. The appraisal would overstate the value of the property by $\$ 100,000$. An adjustment to the base land rate is necessary to recognize the market response to the departure from the standard lot size. Regression analysis would calculate the appropriate land size adjustment necessary to properly determine the contributory value of the larger lot. Dividing the market-indicated value of the lot by the unadjusted appraised value of the lot $(\$ 300,000 / \$ 400,000)$ yields a factor of 0.75 . In this example, CAMA would follow the model:

Appraised land value = Area * (Base Rate *Size Adj)

Residential Base Land Rates By Neighborhood

NBHD	Base Lot Size	Base Rate	Base Lot Value	Size Curve
1A	4000 sf	\$130.32	\$521,280	LG1
1B	5000 sf	\$110.14	\$550,700	LG1
1C	5000 sf	\$111.48	\$557,400	LG1
2A	2000 sf	\$69.64	\$139,280	LG1
2B	2000 sf	\$68.07	\$136,140	LG1
3	2000 sf	\$67.50	\$135,000	LG1
4A	6700 sf	\$114.23	\$765,340	LG3
4B	10000 sf	\$100.71	\$1,007,100	LG4
4C	8000 sf	\$118.44	\$947,520	LG4
5A	1700 sf	\$148.19	\$251,920	LG1
5B	1700 sf	\$153.10	\$260,270	LG1
6A	4000 sf	\$82.36	\$329,440	LG1
6B	4000 sf	\$83.72	\$334,880	LG1
6C	2000 sf	\$144.71	\$289,420	LG1
6D	4000 sf	\$83.92	\$335,680	LG1
6E	3000 sf	\$100.29	\$300,870	LG1
7A	2000 sf	\$140.65	\$281,300	LG1
7B	3000 sf	\$100.11	\$300,330	LG1
7C	3000 sf	\$108.26	\$324,780	LG1
7D	5000 sf	\$70.35	\$351,750	LG1
7E	2000 sf	\$166.85	\$333,700	LG1
8A	2000 sf	\$271.76	\$543,520	LG1
8B	2000 sf	\$279.59	\$559,180	LG1
9A	1400 sf	\$421.12	\$589,570	LG2
9B	1400 sf	\$452.03	\$632,840	LG2
9C	1400 sf	\$441.34	\$617,880	LG2
10	1400 sf	\$533.87	\$747,420	LG1
11A	5000 sf	\$112.45	\$562,250	LG1
11B	5000 sf	\$110.37	\$551,850	LG1
11C	5000 sf	\$111.08	\$555,400	LG1
11D	5000 sf	\$103.31	\$516,550	LG1
11E	5000 sf	\$97.71	\$488,550	LG1
12	4000 sf	\$78.47	\$313,880	LG1
13	5000 sf	\$179.77	\$898,850	LG4
14	9000 sf	\$54.54	\$490,860	LG1
15A	1800 sf	\$258.32	\$464,980	LG1
15B	1800 sf	\$242.10	\$435,780	LG1
15C	1800 sf	\$235.75	\$424,350	LG1
15D	1800 sf	\$254.16	\$457,490	LG1
15E	1800 sf	\$275.65	\$496,170	LG3
16A	2400 sf	\$50.10	\$120,240	LG1
16B	2400 sf	\$54.08	\$129,790	LG1
16C	2400 sf	\$48.31	\$115,940	LG1
17	6000 sf	\$87.03	\$522,180	LG1
18A	3000 sf	\$48.14	\$144,420	LG1
18B	3000 sf	\$44.72	\$134,160	LG1
18C	3000 sf	\$44.56	\$133,680	LG1
18D	3000 sf	\$44.68	\$134,040	LG1

NBHD	Base Lot Size	Base Rate	Base Lot Value	Size Curve
18E	3000 sf	\$47.23	\$141,690	LG1
19A	1800 sf	\$278.27	\$500,890	LG1
19B	1800 sf	\$225.00	\$405,000	LG1
20	1000 sf	\$599.10	\$599,100	LG1
21	9000 sf	\$93.93	\$845,370	LG3
22A	3000 sf	\$47.17	\$141,510	LG1
22B	2400 sf	\$56.04	\$134,500	LG1
22C	3000 sf	\$44.58	\$133,740	LG1
22D	2400 sf	\$57.32	\$137,570	LG1
23	2500 sf	\$202.46	\$506,150	LG1
24	2400 sf	\$279.38	\$670,510	LG1
25A	1800 sf	\$347.85	\$626,130	LG3
25B	1800 sf	\$441.07	\$793,930	LG3
25C	1800 sf	\$420.50	\$756,900	LG3
25D	1800 sf	\$383.54	\$690,370	LG3
25E	1800 sf	\$477.99	\$860,380	LG4
25F	2000 sf	\$472.08	\$944,160	LG4
25G	2000 sf	\$456.65	\$913,300	LG3
25H	2000 sf	\$409.41	\$818,820	LG4
251	800 sf	\$659.50	\$527,600	LG3
25J	1200 sf	\$562.89	\$675,470	LG4
26	1700 sf	\$321.61	\$546,740	LG1
27	9000 sf	\$56.23	\$506,070	LG1
28A	2400 sf	\$58.71	\$140,900	LG2
28B	5000 sf	\$34.18	\$170,900	LG1
28C	5000 sf	\$35.60	\$178,000	LG1
29A	2000 sf	\$373.82	\$747,640	LG4
29B	2000 sf	\$351.52	\$703,040	LG4
29C	2000 sf	\$357.61	\$715,220	LG3
30A	5000 sf	\$133.68	\$668,400	LG4
30B	5000 sf	\$145.73	\$728,650	LG4
30C	7000 sf	\$115.44	\$808,080	LG4
31A	1800 sf	\$294.24	\$529,630	LG1
31B	1800 sf	\$285.58	\$514,040	LG1
32A	5000 sf	\$30.05	\$150,250	LG1
32B	2000 sf	\$66.84	\$133,680	LG1
32C	2000 sf	\$72.56	\$145,120	LG1
33A	2000 sf	\$63.46	\$126,920	LG1
33B	2000 sf	\$58.42	\$116,840	LG1
34	9000 sf	\$136.48	\$1,228,320	LG4
35	5000 sf	\$63.35	\$316,750	LG1
36A	2000 sf	\$279.70	\$559,400	LG1
36B	2000 sf	\$283.28	\$566,560	LG3
36C	1600 sf	\$315.62	\$504,990	LG1
37	3000 sf	\$197.76	\$593,280	LG3
38	5000 sf	\$172.79	\$863,950	LG4
39A	1500 sf	\$292.59	\$438,880	LG1
39B	1500 sf	\$315.40	\$473,100	LG1

NBHD	Base Lot Size	Base Rate	Base Lot Value	Size Curve
39C	1500 sf	\$372.62	\$558,930	LG1
39D	1500 sf	\$288.11	\$432,160	LG1
39E	1200 sf	\$360.24	\$432,290	LG1
39F	1200 sf	\$366.77	\$440,120	LG1
39G	1500 sf	\$255.79	\$383,680	LG1
39H	1500 sf	\$247.18	\$370,770	LG1
39J	1500 sf	\$341.01	\$511,520	LG1
39K	1500 sf	\$370.25	\$555,380	LG1
39L	1200 sf	\$386.45	\$463,740	LG1
39M	1500 sf	\$372.43	\$558,640	LG1
40A	1400 sf	\$317.30	\$444,220	LG1
40B	1400 sf	\$385.47	\$539,660	LG1
40C	1600 sf	\$406.69	\$650,700	LG2
40D	1600 sf	\$455.64	\$729,020	LG2
40E	1600 sf	\$464.33	\$742,930	LG2
40F	1200 sf	\$452.85	\$543,420	LG2
40G	1600 sf	\$376.48	\$602,370	LG1
41	5000 sf	\$129.50	\$647,500	LG2
42A	1800 sf	\$240.05	\$432,090	LG1
42B	1800 sf	\$217.79	\$392,020	LG1
42C	1800 sf	\$215.98	\$388,760	LG1
43A	2000 sf	\$72.13	\$144,260	LG1
43B	2000 sf	\$66.37	\$132,740	LG1
43C	2000 sf	\$72.61	\$145,220	LG1
43D	2000 sf	\$62.83	\$125,660	LG1
46	1200 sf	\$418.16	\$501,790	LG1
47	3000 sf	\$99.00	\$297,000	LG1
48	5000 sf	\$79.63	\$398,150	LG1
49A	3000 sf	\$137.79	\$413,370	LG1
49B	3000 sf	\$129.39	\$388,170	LG1
49C	3000 sf	\$123.66	\$370,980	LG1
50A	10000 sf	\$83.90	\$839,000	LG3
50B	6000 sf	\$113.11	\$678,660	LG2
50 C	14000 sf	\$73.45	\$1,028,300	LG3
50D	15000 sf	\$91.20	\$1,368,000	LG3
51	3000 sf	\$103.55	\$310,650	LG2
52A	1800 sf	\$225.19	\$405,340	LG1
52B	1600 sf	\$221.31	\$354,100	LG1
52C	1600 sf	\$198.69	\$317,900	LG1
53	5000 sf	\$127.44	\$637,200	LG1
54A	6000 sf	\$149.75	\$898,500	LG4
54B	1000 sf	\$413.95	\$413,950	LG1
55	6000 sf	\$142.78	\$856,680	LG2
56A	5000 sf	\$60.55	\$302,750	LG1
56B	5000 sf	\$59.76	\$298,800	LG1
56C	5000 sf	\$56.52	\$282,600	LG1
56D	5000 sf	\$58.49	\$292,450	LG1
66	5000 sf	\$60.79	\$303,950	LG1

Residential Land Size Curves

Condominium Size Curve

Vision CAMA Residential Valuation Process

The market-derived cost approach to the valuation of real estate follows the generic formula of Market Value $=(($ RCN-LD $)+$ land value), where RCN is Replacement Cost New of the improvements and LD means Less Depreciation. When properly developed and calibrated, this approach is a reliable indicator of market value especially suited to mass-appraisal CAMA systems.

The following exercise will attempt to illustrate how the Vision ${ }^{\circledR}$ CAMA system utilized by the District of Columbia, calculates values using the above model. The first section will illustrate the development of the Replacement Cost New of a typical residence, the second will show the steps involved in determining the amount of depreciation that has accrued to the residence, and the last section will illustrate land or lot valuation.

Replacement Cost New

The Vision ${ }^{\odot}$ CAMA system arrives at a RCN value for residential properties based on a market-calibrated hybrid cost model. The hybrid nature of the model simply means that the model employs both additive and multiplicative variables in its design and specification. The nature of the model will become clearer as we proceed through this exercise. Please also be aware that a model is dynamic in both its specifications and calibration. The specifications, those cost elements that comprise the model, may change from time to time based upon research and market conditions. As you may discover, the dollar rates, or calibrations, contained here most likely are different from the current model in use. The model used in this exercise is as follows:

Building RCN = [(Base Rate + $\sum \mathrm{ABRV}_{\mathrm{n}}$) * Effective Area * Size Adjustment + $\sum \mathrm{AFRV}_{\mathrm{n}}$] ${ }^{*}\left(\mathrm{MV}_{0}{ }^{*} \mathrm{MV}_{2}{ }^{*} \ldots{ }^{*} \mathrm{MV}_{\mathrm{n}}\right)$

```
Where:
RCN = Replacement Cost New
Base Rate = $ rate based on use code
ABRV = Additive Base Rate Variables
Effective Area = Adjusted SF area of improvement
Size Adjustment = Adjustment factor for deviation from base size
AFRV = Additive Flat Rate Variables
MV = Multiplicative Variables
```

Several items will be helpful while examining the features of the cost model and they are collected as Appendix "A" of this document. You will need to refer to them often during this exercise. They include the following:

- Sample home's Property Record Card (PRC)
- Cost.dat printout of the sample home
- CAMA Residential Construction Valuation Guideline

1. First, let's illustrate the calculation of the Effective Area of our sample home.
```
Building RCN = [(Base Rate + \(\sum \mathrm{ABRV}_{\mathrm{n}}\) ) * Effective Area * Size
Adjustment + \(\sum\) AFRV \(_{n}\) ] \({ }^{*}\left(\right.\) MV \(_{0}{ }^{*}\) MV \(_{2}{ }^{*} \ldots V^{*}\) MV \(\left._{n}\right)\)
```

Illustration 1 shows the CAMA sketch of the sample home we'll be using throughout this exercise.

It is described as a $21 / 2$ story single-family detached residence, with basement. It is brick veneer, frame construction with a two-car garage and small porch across the front. CAMA provides the information about the sizes of the various areas of the house in the depreciation section.

Section Summary					
Group	R11			Effective Area 3498	
Base Rate	133.84			RCN	\$1,881,638
Eff Base Rat	e $\$ 474.10$			Bldg \% Good	91
Net Other Adj	dj $\$ 223,227.29$			RCNLD	\$500
Living Area/GBA 3000					
Code	Description	Gross	Living	Eff Area	
FHS		1200	600	600	
FUS		1200	1200	1200	
BAS		1200	1200	1200	
UBM		1200	0	300	
FGR		440	0	198	
FBP		400	0	0	

Illustration 2

The Effective Area is comprised of the totals of the base area (Main Building Area @ 1,200 SF), the finished second floor area (Upper Story, Finished @ 1,200 SF), the adjusted area of the finished half story (Half Story, Finished @ 50% of 1200 SF), the adjusted area of the garage (Garage, Attached @ 45\% of 440 SF), and the adjusted area of the unfinished basement (Basement, Unfinished @ 25\% of 1,200 SF).
The adjustments to the finished half story, garage and unfinished basement take into account these areas are not as expensive as the finished main building area. For example, if the base rate for the finished main building area is $\$ 100 / \mathrm{SF}$, the rate for the garage area may only be $\$ 45 / \mathrm{SF}$. The RCN value of the garage would be calculated as follows:

RCN of Garage $\mathbf{=} \mathbf{\$ 1 9 , 8 0 0}$ or (440 SF * $\$ 45$)

Another way to state the same situation is to adjust the size of the garage to 40% of its measured size and then multiply the resulting, or effective, size by the base rate of $\$ 100 /$ SF:

$$
\text { RCN of Garage }=\$ 19,800 \text { or }\left[(440 \text { * } .45)^{*} \$ 100\right]
$$

Both methods arrive at the same value for the garage. The first method is more intuitive and easier to explain to taxpayers as it adjusts for the differences in costs for the various areas. The second method again provides the same results but is much easier to model and calculate within a CAMA system, thus the effective area calculations shown here represent the methodology employed in the Vision ${ }^{\circledR}$ CAMA system.

Let's take a moment to examine the treatment of the basement in this house. The house has a full-sized basement comprised of 1,200 SF. In addition, the basement contains a finished area (400 SF), and the balance as unfinished. Illustration 3 shows the contribution of the unfinished portion to the effective area calculation. However, notice that the finished portion of the basement is not included in the effective area calculations. The value attributed to this finished area is accounted for as an Additive Flat Rate Variable later in the valuation model. The reason for this methodology is to ensure that the effective area is not erroneously overstated by the amount of any finished area in the basement.

Finally, the Gross Area shown in Illustration 3 is the total unadjusted size of all the areas that are a part of, and attached to, the home. The Living Area is the unadjusted size of the actual finished living area of the home.

With the inclusion of the Effective Area calculation, our cost model now looks like this:

```
Building RCN = [(Base Rate + \sum ABRV n) * 3,498 * Size Adjustment
    Effective Area
+ \sum AFRV | ] * (MV * MV * * .. * MV ()
```

2. Next, let's look at the selection of the Base Rate for the sample home.
```
Building RCN = [(Base Rate + \sum ABRV ) * Effective Area * Size
Adjustment + \sum AFRV ] * (MV * * MV % * ... * MV n)
```

The Base Rate is the dollar rate per square foot used in the valuation model that is derived from market analysis and selected based on the Use Code of the building. Our sample home is a "Use Code 012 - Detached", corresponding to a Residential-Detached-Single Family residence. The Base Rate is automatically selected by the CAMA system and the appropriate base rate for the sample home is $\$ 149.27$. Now the cost model looks like this:

```
Building RCN = [($157.85 + \sum ABRV n) * 3,498 * Size Adjustment
    Base Rate Effective Area
+ \sum AFRV | ] * (MV * *MV * ... * MV 
```

3. The Base Rate of the home is just the start of the valuation process and it will be further modified as more specific features about the home are taken into consideration. Let's look at the first of two types of modifications that will affect the Base Rate, the Additive Base Rate Variables (ABRV).
```
Building RCN = [(Base Rate + \sum ABRV ) * Effective Area * Size
```


Additive Base Rate Variables represent a variety of features found in residential improvements. For example, the value for air conditioning and floor covering are such features. The typical characteristic of these ABRVs is that the features are usually an integral part, and therefore an integral cost, of the whole house. As such, the value of the particular ABRV is added to the Base Rate. Each ABRV incrementally increases the Base Rate by its own square foot rate. So therefore, the $\sum \mathbf{A B R V}$ literally means the sum of all the rates for individual features are added to the Base Rate.

Highlighted in Illustration 4 are all the fields in the Construction Detail CAMA screen that can modify the selected Base Rate as ABRVs.

Illustration 4

The Cost.dat sheet of our sample home lists each ABRV under the heading Base Rate Adjustments as follows:
***************Base Rate Adjustments $* * * * * * * * * * * * * * * * * * * *$
AIR CONDITIONING Y (Yes) $=1.8+$ BaseRate
EXTERIOR WALL 15 (Face Brick) $=3.95+$ BaseRate FLOOR COVER 11 (Hardwood/Carp) $=4.67$ + BaseRate ROOF COVER 3 (Shingle) $=.68+$ BaseRate

The sum, Σ, is $\$ 11.10(1.80+3.95+4.67+0.68)$. This will be added to the Base Rate of $\$ 157.85$ to give a modified Base Rate of $\$ 168.95$.

Our model now looks like this:

```
Building RCN = [(\$157.85 + \$11.10) * 3,498 * Size Adjustment
    Base Rate \(\quad \Sigma A B R V_{n}\) Effective Area
    \(\left.+\sum \operatorname{AFRV}_{\mathrm{n}}\right]^{*}\left(\mathrm{MV}_{0}{ }^{*} \mathrm{MV}_{2}{ }^{*} \ldots{ }^{*} \mathrm{MV}_{\mathrm{n}}\right)\)
```

4. Next, let us turn our attention to the second type of modification to the Base Rate - the Size Adjustment.
```
Building RCN = [(Base Rate + \sum ABRV n) * Effective Area * Size
Adjustment + \sum AFRV ] ] (MV % * MV % * .. * MV ( )
```

The Size Adjustment modifies the Base Rate to account for the size difference between the "standard size" for the "typical" house in the model and the actual size of the sample house. The "standard" size of $1,800 \mathrm{SF}$ for the "typical" house, consisting of a 2-story frame residence, is used as the basis for establishing the initial Base Rates used in CAMA. The adjustment in the Base Rate allows the proper square foot rate to be applied to a house based on its size. It is reasonable to expect that as a house becomes larger than typical, the rate per square foot would decrease and conversely, if the house were smaller than typical, the rate would be higher. This Size Adjustment variable is the component in the model that adjusts for this situation. Our sample home's Size Adjustment is 0.89128 as listed on the Cost.dat sheet. Now our Base Rate is calculated to be $\$ 150.58$ ((157.85+11.10) * 0.89128$)$.

Because the adjustment is less than 1.00, it would be proper to conclude that our sample home is larger than the typical 2-story home in the District of Columbia. Had the sample home been smaller than 1,800 SF, the Size Adjustment would have been greater than 1.00. The use of size adjustments eliminates the need for the traditional cost tables based on size.

The cost model continues to grow, and now looks like this:

```
Building RCN = [ ($157.85 + $11.10) * 3,498 * 0.89128
    Base Rate \ \ABRV Effective Area Size Adjustment
```


5. We are finished establishing the Base Rate for our sample home and now turn to the Additive Flat Rate Variables (AFRV). This portion of the cost model is relatively straightforward. The individual Additive Flat Rate Variables are summed and the added to the product of the previous calculations.

Building RCN $=\left[\left(\right.\right.$ Base Rate $\left.+\sum \mathrm{ABRV}_{n}\right)$ * Effective Area * Size Adjustment + $\sum \mathrm{AFRV}_{\mathrm{n}}$] * $\left(\mathrm{MV}_{0}{ }^{*} \mathrm{MV}_{2}{ }^{*} \ldots{ }^{*} \mathrm{MV}_{\mathrm{n}}\right)$

Here is where we make allowances for individual extra features contained in the sample house. Illustration 5 shows some of those features that constitute Additive Flat Rate Variables in the cost model:

Unlike the Additive Base Rate Variables (ABRV) described earlier, most of these features are not an integral portion of the whole house, but stand alone, so to speak. Examples include such items as fireplaces, extra bathrooms, and extra kitchens. Again, as with other variables in the cost model, the values of these features are derived from market analysis.

Our sample home has several Additive Flat Rate Variables (AFRVs), including additional bathrooms and a fireplace. The cost for one full bath and one kitchen is always included in the original base rate. Any bathrooms or kitchens over and above the first are accounted for as AFRVs.

The value of an additive flat rate variable is calculated by multiplying the number of "units" by the dollar rate per unit. For example, illustration 5 shows our sample home also has two half baths. The AFRV for the half baths is $\$ 16,250$ (2 "units" $X \$ 8,125$ per unit) as shown in a portion of the Cost.dat file below.

Also included in the AFRVs are the partitioned finished basement and the small open porch on the front of the house. Recall that in illustration 3, neither of these
areas was included in the calculation of the effective area of the house, therefore, their valuations are included here, as AFRVs.

The partitioned finished basement is calculated to be $\$ 22,000$. In this case, "units", the gross square footage of 400 SF (shown in the sketch area of the record), are multiplied by the rate of $\$ 55$ per SF. The open porch is calculated in a similar manner.

```
****************Flat Value Additions***********************
    FULL BATHS OVER 1 = 12500 + RCN
    HALF BATHS = 16250 + RCN
    FIREPLACES = 8000 + RCN
    PARTITIONED FINISHED BASEMENT = 22000 + RCN
    OPEN PORCH = 1320+RCN
```

The sum, Σ, is $\$ 60,070(16,000+22,000+7,100+18,000+801)$ that will be added to the product of the previous portions of the cost formula.

The cost model is almost finished for our sample home, and now looks like this:

```
Building RCN = [ ($157.85 + $11.10) * 3,498 * 0.89128
    Base Rate \ ABRV N Effective Area Size Adjustment
    + $60,070 ] * (MV * MV * * .. * MV ( )
        \sumAFRV
```

6. The last portion of the cost model used to calculate the RCN are the multiplicative variables (MV).

$$
\begin{aligned}
& \text { Building RCN = [(Base Rate + } \left.\sum \text { ABRV }_{n}\right)^{*} \text { Effective Area * Size } \\
& \text { Adjustment } \left.+\sum \text { AFRV }_{n}\right] \text { * }\left(\text { MV }_{0}{ }^{*} \mathbf{M V}_{2}{ }^{*} \ldots{ }^{*} \mathbf{M V}_{n}\right)
\end{aligned}
$$

This portion of the formula can have the largest influence on the cost model. Each multiplicative variable modifies all of the cost data that has preceded it. These variables modify the Base Rate, the sum of all the increases to the Base Rate ($\sum \mathrm{ABRV} \mathrm{V}_{\mathrm{n}}$), the Size Adjustment, and the sum of all the Flat Rate Variables ($\sum \mathrm{AFRV}$ n). This is where such important characteristics as the building grade, building condition, remodeling, and location factors have their impact.

The sample home is graded "Above Average - 4", and consequently has a 1.091 multiplicative factor. This one variable, grade, is going to increase the RCN value of the sample home by 10%. Grade can have a sizable impact on the final value of the building. For example, a "Superior - 8" increases the final rate by 48% over that of an "Average Quality - 3" house.

The condition of the building is also accounted for by the multiplicative variables. The interior, exterior and overall conditions of our sample home are each "Good" and the corresponding multiplicative variable for each is 4.8%. The level of condition may be different for each of the three variables and therefore the coefficients may be different. Please refer to the 2007 CAMA Residential Construction Valuation Guideline --RPAD for these and all other coefficients used in the valuation model.

Just as construction grade has a significant impact on the final value of a house, so does condition. For example, a house in overall "Poor" condition throughout will have its value reduced by 20.6%, whereas a house in excellent condition throughout will have its value increased by 10.5\%. That's a range of over 31%.

Illustration "6" shows a portion of the features that constitute the multiplicative variables in the cost model:

Illustration 6

Another important multiplicative variable, Remodel Type, takes into account whether or not the house has been remodeled and to what extent. In addition, the age of the remodel factors into the amount of adjustment applied by this multiplicative variable.

Our sample home was remodeled in 2001. The portion of the CAMA record that captures this information is shown in Illustration 7 below.

Illustration 7
Obviously, a "Gut Rehab" would increase the value of property more than "Cosmetic" changes, and the coefficients listed in the above illustration demonstrate this. Our sample home was remodeled in 2001, indicating that the MV should be five percent. Five percent would be the correct amount if the remodel occurred in 2005, but it actually occurred in 2001, four years earlier. The CAMA model takes into consideration how long ago a remodel occurred and reduces its impact, as it becomes older. The rate of reduction of the MV is five percent per year. After twenty years, a remodel has no affect on value. In this example, our sample home's remodel occurred four years ago and thus the MV is reduced by twenty percent to $4.0 \%\left(5 \%{ }^{*} .80\right)$.

The last multiplicative variable, "Sub-Neighborhood Adj A", is the local neighborhood multiplier established within the particular neighborhood where the sample home is located. This variable is going to lower the RCN value of the sample home by 6.3%. The "Sub-Neighborhood Adj" reflects the market-derived fact that location is a very significant factor in the value of real estate. Two otherwise identical homes can have a substantial difference in value based on their locations.

The variables for our sample home are summarized in the Cost.dat file as follows:

REMODEL FACTOR $4=1.03500 \times$ RCN
SUB-NEIGHBORHOOD ADJ A $=.878 \times$ RCN

Each MV is multiplied together to determine the combined, or overall, MV. The sample home's MV is 1.2338132 (1.091*1.091*1.090*1.091*1.035*.878).
7. Finally, the Building RCN model is complete and contains the specific data of the sample home used in this demonstration. The market-derived cost model for the sample home is as follow:

```
Building RCN = [(Base Rate \(+\sum \mathrm{ABRV}_{\mathrm{n}}\) ) * Effective Area * Size
    \(\$ 754,788=\left[(\$ 157.85+\$ 11.10){ }^{*} 3,498 \quad * .89128\right.\)
Adjustment + \(\sum \mathrm{AFRV}_{\mathrm{n}}\) ] \({ }^{*}\left(\mathrm{MV}_{0}{ }^{*} \mathrm{MV}_{2}{ }^{*} \ldots{ }^{*} \mathrm{MV}_{\mathrm{n}}\right)\)
    \(\$ 60,070\) ] * (1.2862809)
```

The Cost.dat file shows a summary of the same information.

```
****************Building #1 Calc Start*********************
    Cost Calculation for pid, bid = 182803,173587
    Account Number = 9999 9999
    Use Code = 012
    Cost Rate Group = R12
    Model ID: R16
    Section #1
    Base Rate: 157.85
    Size Adjustment: 0.89128
    Effective Area: }349
    Adjusted Base Rate = (157.85 + 11.1) * 0.89128
    Adjusted Base Rate: 150.58
    RCN =((150.58*3498) + 60070)*1.2862802915416647
    RCN: }75478
```

The replacement cost new for our sample home is $\$ 754,188$. There is still one thing left to address before we turn our attention to depreciation. Our sample home has a built-in sauna in the basement. This item was not costed as a component of the sample home, but rather as a Special Building Feature, with its own unit price of $\$ 13,250$. Also, note that the depreciation applied to the Special Building Features is identical to the amount applied to the main building. See illustration 6 below.

We now know the total replacement cost new (RCN) of our sample home, including the sauna, is $\$ 768,038(\$ 754,788+\$ 13,250)$.

If the sample home were brand new, we'd be finished, but it was actually built in 1937.

Next, we need to address accrued depreciation . . .

Depreciation

Depreciation is defined as a loss in the upper limits of value from all sources. Typically, three types of depreciation can affect real estate - physical deterioration, functional obsolescence and economic obsolescence. This next portion of the demonstration will illustrate how Vision ${ }^{\circledR}$ calculates the amount of depreciation accrued to our sample home.

Several terms come into use when discussing depreciation in CAMA. They are defined as follows:

- Actual Age: The mathematical difference between the Base Year and the actual year the improvement was built to completion.
- Actual Year Built (AYB): The earliest time the main portion of the building was built. It is not affected by subsequent construction.
- Base Year: The year, usually the current year, that the depreciation table is calibrated, such that the age of a building built during the base year would be 0 years old.
- Depreciation Table: A market-driven table that lists the amount of depreciation corresponding to an Effective Year Built and the Base Year predicated upon a specific economic life.
- Effective Age: The mathematical difference, in years, between the Base Year and the Effective Year Built.
- Effective Year Built (EYB): The calculated or apparent year, that an improvement was built that is most often more recent than AYB. The EYB is determined by the condition and quality of the improvement. Subsequent renovation, additions, upgrades and the like, extend an improvements remaining economic life and therefore cause the EYB to be closer to the Base Year than the AYB.
- Percent Good: The mathematical difference between 100 percent and the percent of depreciation. (100\% - depreciation \%) = percent good

The RCN model used above indicated that our sample home has an RNC of $\$ 768,038$. As stated earlier, the home was built in 1937 so there should be some depreciation to deduct from the RCN. We'll uses a five-step process to depreciate improvements:

1. Calculate the Actual Age of the improvement
2. Determine the Effective Age of the improvement
3. Determine the improvement's Effective Year Built
4. Look-up Percent Good corresponding to EYB on depreciation table
5. Apply selected depreciation to RCN to determine RCNLD
6. Our first step is to calculate the Actual Age of our sample home. As you are aware, a valuation is always qualified as of a specific date. For ad valorem purposes in the District of Columbia, the valuation date is January 1 immediately preceding the tax year. In our example, the tax year is 2007; therefore, the valuation date is January 1, 2006. This date is also significant in terms of the depreciation accrued to improvements. In the past, the nature of triennial assessments required that base years within a Tri-Group remain unchanged for a period of three years. Now, however, with the return to annual assessments, the base year coincides with the valuation date. The Base Year is used to determine the Actual Age of the sample home. In this case, the sample home's Actual Age is 69 years (2006-1937).
7. The next step is to determine the sample home's Effective Age. Effective Age may or may not represent actual or chronological age. The premise is simple but the application can be confusing. If a home is built and never maintained (painting, re-roof, etc.) or remodeled, the home would quickly depreciate from physical deterioration. The CAMA system would depreciate the home at the fastest rate possible based on the selected Depreciation Table. For example, CAMA uses a 75-year Economic Life Depreciation Table for residential property. If the home were left to rot, the Effective Age would most likely be the same as the Actual Age.

Let's say the owners of our sample home have completely neglected their property from the time it was built in 1937 to the present. Their home would have an effective age of 78 years as indicated on the Depreciation Table below:

54	13	87	1961
55	13	87	1960
56	13	87	1959
57	13	87	1958
58	13	87	1957
59	13	87	1956
60	14	86	1955
61	14	86	1954
62	14	86	1953
63	14	86	1952
64	14	86	1951
65	14	86	1950
70	15	85	1945
75	16	84	1940
78	16	84	1937

The Actual Year Built (1937) and the Effective Year Built (1937) would be the same and consequently the Effective Age is 70 years. Moving across the table, we see that a home with an EYB of 1937 has 15 percent depreciation and therefore is 85 Percent Good ($100 \%-15 \%$). If the RCN of our sample home is $\$ 754,788$, the depreciated value, RCNLD, is only $\$ 641,570\left(754,788^{*} 0.85\right)$.

Note: The depreciation table moves in 5-year periods towards its end; this explains the apparent inconsistencies in 70 years v. 69 years. The Cost.dat file represents the actual numbers used in calculations.

The situation described above rarely, if ever, occurs in the market. People do maintain and renovate their homes and in doing so, extend the home's useful or remaining economic life. As homeowners repair roofs, paint siding, replace windows and furnaces, they prolong the life of the home and consequently decrease its Effective Age.

Along with the actual age of the sample home, the illustration below shows which variables within CAMA affect the calculation of effective year built.

All of the features or variables dealing with depreciation, highlighted in Illustration 2 are multiplicative variables. As such, they are multiplied one by the other and then the Actual Age is multiplied by the product of the MVs. Below is the portion of the Cost.dat file that summaries these MV for our sample home.

```
**************Effective Age Adjustments****************
    BATH STYLE 2 (Semi-Modern) = . 95 * Age
    EFF AGE GRADE 40 (Good Quality) = .95 * Age
    KITCHEN STYLE 2 (Semi-Modern) = .9 * Age
```

The product of each of these MV adjustments is calculated to be 0.81225 (0.95 * * 0.95 * 0.9). This product is then multiplied by the Actual Age to calculate the Effective Age. Recall our sample home's Actual Age is 78 years. The Effective Age is calculated to be 61 years (75 max * 0.81225). Instead of CAMA using 78 chronological years to calculated depreciation, it will use 61 years. Below is a portion of the Cost.dat file that shows these calculations.

```
Actual Year Built: 1937
Effective Age = 75 * . 81225
Effective Age: 61
Percent Good = 86
RCNLD: 649120
```

3. We're almost finished. Knowing the Effective Age makes the calculation of the Effective Year Built for our sample home very simple. The Effective Year Built is 1950 (2006-56).
4. Having established the Effective Year Built, we look up 1950 on the 75Year Economic Life Depreciation Table and find that the Percent Good is 87% for that year. See Illustration 3 below.

5. The last step in the process is to simply multiple the RCN by 0.87 and we have RCN LD. The depreciated, market-derived cost approach value of the sample home used in this demonstration is $\$ 641,570$.

Some closing comments regarding depreciation are in order. Recall from the outset that we defined depreciation as a loss in value resulting from physical deterioration, functional and/or economic obsolescence. The demonstration above dealt only with depreciation attributed to the physical deterioration of the sample home. This, by far, is the most common type of depreciation that exists in residential property. However, occasions may require additional depreciation because of excessive physical deterioration, functional and/or economic obsolescence. One must use caution when invoking these types of depreciation. The market must support any decision regarding the extent of these adjustments. Below illustrates our sample home with an additional ten percent economic obsolescence. A gas station was built across the street from the home, and a recent sale of the next-door neighbor's house showed the impact of this situation.

The actual mechanics of adjusting depreciation for functional or economic obsolescence within CAMA are briefly discussed below. If the situation occurs, seek guidance from your supervisor and/or CAMA manager.

Illustration 5 shows the portion of the CAMA screen used to allow for additional depreciation. It is not necessary to make adjustments in the "CDU" field or to override the EYB field. The "Status" and "Percent Complete" fields are the only two fields that are utilized to account for additional depreciation.

The "Condition" field's pick-list is similar to Illustration 6 shows items that have a direct affect on depreciation and the nature of the affect. Notice that a reduced number of Condition Codes are functional within CAMA and their affect on depreciation is either to replace the existing amount in the "\% Good" field or decrease the "\% Good." The corresponding numeric amount that will affect the "\% Good" is entered in the field called "Percent Complete." Please note that the field name "Percent Complete" is somewhat erroneous because the word "Complete" has no meaning in this context. This is the field that you will enter the
amount to either decrease the existing "\% Good" or replace the existing "\% Good," based on the Status Code selected.

Status				
Status Codes				
	Code	Description	Affect on \% Good	\triangle
	0	Default	NONE	
	A	Abandoned/Boarded	NONE	
	B	Burned Out	NONE	
	C	Commercial New Const	REPLACE	
	E	Economic Dep	DECREASE	
	F	Functional Dep	DECREASE	
	G	Gut Rehab	NUNE	
\checkmark	H	Data Change	NONE	
	L	Limited Equity	NONE	
	M	Demolition	NONE	
	N	N/A	NONE	
	NO	Normal	NONF	
	OV	Overall Depreciation	REPLACE	
	P	Physical Depr	DECREASE	
	P*	Partialabandon	NUNE	
	R	Renovation	NONE	
	T	Order of Taking	NONE	
	V	Vacant	NONE	\checkmark

Illustration 6
Recall our example of the gas station. The Percent Complete field has " 10 " as it's value. Based on the "E" Status Code, we know that the original depreciation will increase by ten percent resulting in a decrease in Percent Good to 77\% (87-10).

Another comment regarding depreciation concerns the impact that the quality of design, material and workmanship have on depreciation. The grade assigned to a home obviously makes a considerable difference in the final RCN, but it also plays a substantial part in determining the amount of depreciation accrued to the home. It is easy to understand that if all other things were equal, a home built with better material and workmanship would age better than one with poorer materials and workmanship. The higher quality the home the more slowly it will deteriorate. Conversely, a shoddily built home will age more quickly than the average home.

Lot Valuation

Now that we've calculated RCN in the first section and the amount of depreciation in the second section, we know the value of our improvements from the formula RCN-LD to be $\$ 639,030$.

Next let's turn our attention to the final portion of the process - land or lot valuation. There are several aspects or characteristics to land that affect its value. Needless to say the old adage "Location, Location, Location!" is certainly true, but beyond that there are considerations for such things as lot size, shape, frontage, topography, view, restrictions and the like that influence the final value of land.

Let's once again return to our sample home and examine the details on the PRC to get our first look at the lot valuation.

v Land Details					
Building !		Lot Type		Land Type (Site	P: Prima *
1					
Use Code	012: Residential Detac *		1:1		
Zoning	R-5-E	Unit Price	76.41		
District		Land Type Adj []	1.00000000		
Frontage	40	Site Adj:	1.00		
Depth	150	Neighborhood	*		
Land Units	6000	Nhbd. Adj.	1.000		
Unit Type	SF: Square Feet	SIZE ADJ	1.0000		

Special Calcs

Notes

Adjustments (Special	$\mathrm{V}:$ View	0

\square Override Appraised Land Value
\square Override Assessed Land Value

Totals

Illustration 1

Notice that the detail tells us the lot size, the price per unit, and any adjustments that affect the lot. The model used to calculate the value of lots in CAMA is as follows:

```
Lot Value = [Lot Size *((Base Rate * Size Adjustment) + \sum Dollar Adjustments) *
\sum Percent Adjustments]
```

The formula represents the following steps:

1. Determine the base rate for the particular neighborhood where the lot is located and multiply that rate by the 'size adjustment factor';
2. Next, add the adjusted rate in step one to the sum of all dollar amount adjustments;
3. Next, multiply the results by the lot size;
4. Lastly, multiply that result by the product of all percentage adjustments.

Most of this activity can be seen in the Land.Dat file in Appendix A of this document. You may wish to refer to it as we go through this exercise.

Let's expand the discussion and follow the steps of the process to explain the lot valuation of our sample home in more detail.

1. "Determine the base rate for the particular neighborhood where the lot is located and multiply that rate by the 'size adjustment factor'."

The residential base land rates are different for each (sub)neighborhood in the District. Each year, the current base rates are updated in CAMA and published in the Assessor Reference Materials. In addition to the base rates, the base lot sizes and size curves are included. Our property is located in Chevy Chase, and below shows the portion of the land rate table for that neighborhood:

NBHD	Base Lot Size	Base Rate	Base Lot Value	Size Curve
11 A	$5,000 \mathrm{sf}$	$\$ 89.00$	$\$ 445,000$	LG 1

The base rate for our property is $\$ 89.00$ per sf.
The size adjustment factors are also incorporated in CAMA. These factors make allowances for lots whose sizes differ from the standard "base" size for the lots in that particular (sub)neighborhood. Recall that as the size or area of a building or lot increases, the dollar rate per unit typically goes down from the base rate, and conversely, the dollar rate typically increases over the base rate when the area or size is smaller than the standard base rate.

Recall that our lot is 6,000 sf in size. The table states that the Base Lot Size is 5,000 , so a size adjustment will be necessary. Intuitively, one would expect that the size adjustment would be less than 100% because the actual lot is larger than the base size lot. CAMA contains the algorithms to calculate the proper size adjustment. Essentially, it determines which "land size curve" is to be used as the basis for determining the adjustment, then it mathematically interpolates and extrapolates the factor from the particular size table associated with the curve based on the amount of difference between the standard size and the actual size.

In the case of our sample home, the size curve is LG 1. This curve is one of the four curves existing in CAMA and it is effect on rates is the lowest of the curves.

Based on the difference between the base size and the actual size of the lot, CAMA has selected a factor of 0.8585 as the adjustment. If the lot were smaller, say 4,000 , sf the selected factor would have been 1.198.

So, to finish step 1, we multiply the (sub)neighborhood base land rate by the calculated size adjustment factor to arrive at a size adjusted rate of $\$ 76.41$ (\$89.00 * 0.8585).

2. "Next, add the adjusted rate in step one to the sum of all dollar amount adjustments."

If there are any dollar-amount adjustments to the rate, this is the time to make the them. For example, you may choose to lower the rate by $\$ 10$ per sf on a particular lot in a neighborhood because it is on a busy street corner. In our example, the rate is increased by $\$ 15$ per sf because the property has an excellent view of the river not enjoyed by the other lots in the neighborhood. This adjustment increases the rate to $\$ 91.41$ (\$76.41 + \$15.00).

Use caution when making any adjustments to the calculated rates. If adjustments are warranted, seek guidance from your supervisor or CAMA manager.
3. "Next, multiply the resulting rate by the lot size."

This is an easy step. The land value at this point is $\$ 458,460\left(\$ 76.41{ }^{*} 6,000\right)$.

4. "Lastly, multiply that result by the product of all percentage adjustments."

As before, here's where we can reflect adjustment to the lot for such things as topography, view, shape irregularity, and the like. There may be an easement across the back of the lot that affects value. Again be certain that the adjustment is peculiar to just the subject or a few lots in the (sub)neighborhood, otherwise the condition would have been already accounted for in the calculations done by the multiple regression analysis process that generated the original base rates, size curves and standard lot sizes.

Our sample lot had a steep drop-off across the back that the assessor accounted for by adjusting the final rate by 80 percent. This is the last calculation to determine the subject property's lot value. The final value of our lot is $\$ 366,768$ (458,460 * 0.80).

The illustrations below summarize much of the information discussed in this land valuation exercise. Illustration 3 shows a portion of the data entry screen in Vision ${ }^{\circledR}$ CAMA and the second, illustration 4, is the Land.dat file with selected information highlighted.

Illustration 3

REPORT GENERATED ON 26-Feb-2015 AT 08:36	
Account Number $=99999999$	
Use Code = 012	
Recalc Land for PID 182803	
Recalc Land for Bldg Num 1 on land line 1	
Check for any special use value overrides	
Land Use Code $=012$	
Special Use Value $=0.00$	
Special Use Percent $=80.00$	
Base District $=11$ N************************************* Noighborhood 11 A	
Find the region for a group and district From Land Rate Table Land Group $=$ R	
Region = District, Region not defined	
Base Sub District $=\mathrm{A}$	
Z Contour =	
District Standard Size $=5000$ District Base Price Size $=89.00$ District Size Adjustment $=$ LG1 Internal calculations to arrive at	
Land group based Value Source $=C$ C adjustments for non-standard base si	
Size Ratio $=6000.000 / 5000 * 10000$	
Size Ratio $=12000.000$	
Interpolate/Extrapolate from size adj curve table Base rate multiplied by size adjustment	
High Factor $=0.8585$	
District pricing based unit_type value $=76.4$	
Total ajustment $a=1$ * 1.000 * 1.00 * 1 * 1	
Total ajustment $\mathbf{a}=1.00000$	
$\begin{aligned} & \text { Land Value }=76.41 * 6000.000 \\ & \text { Land Value Rounded }=458460 \end{aligned}$	
	land Value

Some Final Thoughts

We have introduced you to some of the most elementary aspects of property valuation using the District's Vision ${ }^{\circledR}$ CAMA system. We have developed the RCN of a fictitious home, reduced its value by the accrued depreciation and finally added the land value component to complete the appraisal. This guideline is merely a small window, a first step, in the complex field of CAMA mass appraisal. A CAMA system robust enough to appraise 180,000 different properties will necessarily be comprehensive and complex. As you explore and utilize the program make certain that you fully understand the ramifications and results of your actions. Your supervisor and/or CAMA manager will always be available to assist you.

Appendix A

1. Property Record Card, SSL 99999999
2. Cost.dat print-out, SSL 99999999
3. Land.dat print-out, SSL 99999999
4. 2007 CAMA Construction Valuation Guideline - Residential

OUTPUT FROM NEW COST MODELING ENGINE

REPORT GENERATED ON 27-Feb-2015 AT 08:28

```
***************Building #1 Calc Start****************
```

Cost Calculation for pid, bid $=182803,173587$
Account Number $=99999999$
Use Code = 012
Cost Rate Group = R12
Model ID: = R16

Section \#1

Section Use: Residential Detached Single Fa
Base Rate: 157.85
Size Adjustment: 0.89128
Effective Area: 3498
Adjusted Base Rate $=(157.85+11.100000) * 0.89128$
Adjusted Base Rate: 150.58
$R C N=((150.58 * 3498+60070.000000000) * 1.2862802915416647000000000000)+0$
RCN: 754788
******************Base Rate Adjustments ${ }^{* * * * * * * * * * * * * ~}$
EXTERIOR WALL $15=3.950$ + BaseRate
ROOF COVER $3=0.680000+$ BaseRate
FLOOR COVER $11=4.670$ + BaseRate
AIR CONDITIONING $Y=1.800$ + BaseRate

```
******************Units Value Additions*****************
FULL BATHS OVER \(1=12500.000+\) RCN
HALF BATHS \(=16250.000+\) RCN
FIREPLACES \(=8000.000+\) RCN
PARTITIONED FINISHED BASEMENT \(=22000.000+\) RCN
OPEN PORCH = \(1320.000+\) RCN
******************Factor Adjustments*******************
GRADE \(4=1.090 \times\) RCN
INTERIOR CONDITION \(4=1.091 \times\) RCN
EXTERIOR CONDITION \(4=1.091 \times\) RCN
OVERALL CONDITION \(4=1.091 \times\) RCN
REMODEL FACTOR \(4=1.035000000000 \times\) RCN
SUB-NEIGHBORHOOD ADJ A \(=0.878000 \times\) RCN
******************Effective Age Adjustments*******************
EFF AGE GRADE \(4=0.950 \times\) Age
BATH STYLE \(2=0.950 \times\) Age
KITCHEN STYLE \(2=0.900 \times\) Age
```

Actual Year Built: 1937
Effective Age = 61

Percent Good $=86$
RCNLD: 649120
\qquad

Account Number $=99999999$
Use Code $=012$

Recalc Land for PID 182803
Recalc Land for Bldg Num 1 on land line 1

Check for any special use value overrides
Land Use Code $=012$
Special Use Value $=0.00$
Special Use Percent $=80.00$
Base District $=11$
**
Find the region for a group and district
Land Group = R
Region $=$ District, Region not defined
Base Sub District $=\mathrm{A}$
Z Contour =
District Standard Size $=5000$
District Base Price Size $=89.00$
District Size Adjustment $=$ LG1
Land group based Value Source $=C$
Size Ratio $=6000.000 / 5000 * 10000$
Size Ratio $=12000.000$
Interpolate/Extrapolate from size adj curve table
High Unit Size $=120.00$
High Factor $=0.8585$
District pricing based unit_type value $=76.41$
Total ajustment $\mathrm{a}=1$ * 1.000 * 1.00 * 1 * 1
Total ajustment a $=1.00000$
Land Value $=76.41 * 6000.000$
Land Value Rounded $=458460$

USECODE

(Selects No.	Base Rate) Description	Value
011	Row	
012	Detached	$\$ 133.84$
012	Semi-Detached	$\$ 133.85$
013	Mixed Use	$\$ 133.84$
015	Miscellaneous	$\$ 133.84$
019	Small Apt. Bldg.	$\$ 105.55$
023	Conversion	$\$ 136.19$
024		

\section*{	CONSTRUCTION DETAIL
No. Description Value	}

$\begin{array}{ll}\text { Style } & \text { (Descriptive) } \\ 1 & 1 \text { Story }\end{array}$
1.5 Story Unfin
1.5 Story Fin

2 Story
2.5 Story Unfin
2.5 Story Fin

3 Story
3.5 Story Unfin
3.5 Story Fin

4 Story
4.5 Story Unfin
4.5 Story Fin

Bi-Level
Split Level
Split Foyer

Foundation (Descriptive)	
0	No Data
4	Pier
5	Wood
6	Concrete
View	(Descriptive)
0	Typical
1	Poor
2	Fair
3	Average
4	Good
5	Very Good
6	Excellent

Building Type (Descriptive)		
0	Default	
1	Single	
2	Multi	
6	Row End	$\$ 2.50$
7	Row Inside	
8	Semi-Detached	
Roof	(Add to Base Rate)	
0	Typical	
1	Comp Shingle	
2	Built Up	
3	Shingle	$\$ 0.68$
4	Shake	$\$ 0.79$
5	Metal-Pre	$\$ 0.50$
6	Metal Sms	$\$ 0.50$
7	Metal-Cpr	$\$ 0.50$
8	Composition Roll	$-\$ 0.43$
9	Concrete Tile	$\$ 1.88$
10	Clay Tile	$\$ 2.93$
11	Slate	$\$ 2.86$
12	Concrete	$\$ 1.88$
13	Neoprene	$\$ 0.00$
15	Wood- FS	$\$ 0.68$

Exterior Finish (Add to Base Rate)		
0	Default	
1	Plywood	
2	Hardboard Lap	
3	Metal Siding	
4	Vinyl Siding	
5	Stucco	
6	Wood Siding	
7	Shingle	
8	SPlaster	
9	Rustic Log	
10	Brick Veneer	$\$ 3.95$
11	Stone Veneer	$\$ 9.38$
12	Concrete Block	
13	Stucco Block	
14	Common Brick	$\$ 3.95$
15	Face Brick	$\$ 3.95$
16	Adobe	
17	Stone	$\$ 9.38$
18	Concrete	$\$ 3.95$
19	Aluminum	
20	Brick/Stone	$\$ 6.67$
21	Brick/Stucco	$\$ 1.98$
22	Brick/Siding	$\$ 1.98$
23	Stone/Stucco	$\$ 4.69$
24	Stone/Siding	$\$ 4.69$

Heat Type (Add to Base Rate)
No Data
Forced Air
Air-Oil
Wall Furnace
Electric Rad
Elec Base Brd
Water Base Brd
Warm Cool
Ht Pump
Evp Cool
Air Exchng
Gravity Furnace
Ind Unit
Hot Water Rad
AC Type (Add to Base Rate)

O	Default
N	No

$\$ 1.80$

Floor Covering (Add to Base Rate)		
0	Default	$\$ 2.50$
1	Resilient	$\$ 2.63$
2	Carpet	$\$ 2.17$
3	Wood Floor	$\$ 6.06$
4	Ceramic Tile	$\$ 8.53$
5	Terrazzo	$\$ 8.30$
6	Hardwood	$\$ 7.17$
7	Parquet	$\$ 8.15$
8	Vinyl Comp	$\$ 1.64$
9	Vinyl Sheet	$\$ 2.86$
10	Lt Concrete	$\$ 0.75$
11	Hardwood/Carp	$\$ 4.67$

Per Unit Adjustment (Flat Rate Add)

Full Bath (over 1)	$\$ 12,500$
Half Bath	$\$ 8,125$
Fireplace	$\$ 8,000$
Kitchen	$\$ 11,500$
Finished Basement (Basic)	$\$ 20.00 / \mathrm{sf}$
Finished Basement (Partition)	$\$ 55.00 / \mathrm{sf}$
Basement Garage	$\$ 45.00 / \mathrm{sf}$
Carport	$\$ 33.00 / \mathrm{sf}$
Stoop	$\$ 22.00 / \mathrm{sf}$
Open Porch	$\$ 22.00 / \mathrm{sf}$
Covered Open Porch	$\$ 38.50 / \mathrm{sf}$

Screen Enclosed Porch	$\$ 41.25 / \mathrm{sf}$
Glass Enclosed Porch	$\$ 46.75 / \mathrm{sf}$
Fully Enclosed Porch	$\$ 55.00 / \mathrm{sf}$
Deck	$\$ 27.50 / \mathrm{sf}$
Patio	$\$ 8.25 / \mathrm{sf}$

Grade (Multiplies Base, Add \& Flat)		
0	Default	
1	Low Quality	0.50
2	Fair Quality	0.75
3	Average Quality	1.00
4	Above Average Quality	1.09
5	Good Quality	1.19
6	Very Good Quality	1.30
7	Excellent Quality	1.43
8	Superior Quality	1.66
9	Extraordinary - A	1.92
10	Extraordinary - B	2.15
11	Extraordinary - C	2.50
12	Extraordinary - D	2.85

Interior Condition (Multiplies Base, Add \& Flat)
$0 \quad$ Typical

Typical	.766
Poor	.819
Fair	1.000
Average	1.091
Good	1.179
Very Good	1.239

Exterior Condition (Multiplies Base, Add \& Flat)		
0	Default	
1	Poor	.766
2	Fair	.819
3	Average	1.000
4	Good	1.091
5	Very Good	1.179
6	Excellent	1.239

Overall Condition (Multiplies Base, Add \& Flat)

Default	
Poor	.766
Fair	.819
Average	1.000
Good	1.091
Very Good	1.179
Excellent	1.239

Remodel Type (Multiplies Base, Add \& Flat)
0 Default
Unknown

Gut Rehab	1.44
Major Renov	1.26
Remodel	1.10
Addition	
Cosmetic	1.02

The effect of this multiplier diminishes at a rate of 5\% per year based on the Remodel Year.

DEPRECIATION DETAIL		
No.	Description	Value
Grade	(Adjust EYB)	
0	Default	
1	Low Quality	20%
2	Fair Quality	10%
3	Average Quality	--
4	Above Average	-05%
5	Good Quality	-10%
6	Very Good Quality	-15%
7	Excellent Quality	-25%
8	Superior Quality	-35%
9	Extraordinary - A	-45%
10	Extraordinary - B	-50%
11	Extraordinary - C	-50%
12	Extraordinary - D	-50%

Bath Style (Adjust EYB)		
0	Default	
1	No Remodeling	
2	Semi-Modern	-05%
3	Modern	-10%
4	Luxury	-20%

Kitchen Style (Adjust EYB)

0	Default	
1	No Remodeling	
2	Semi-Modern	-10%
3	Modern	-20%
4	Luxury	-40%

Effective Area * Size Adjustment $+\Sigma$

Where:

Base Rate = \$ rate based on use and style
ABRV = Additive Base Rate Variables
Size Adjustment $=$ Adjustment factor for deviation from base size

MV = Multiplicative Variables

Depreciation Table			
$\begin{gathered} \text { Base Year } \\ 2015 \end{gathered}$			
$\begin{gathered} \hline \text { Effective } \\ \text { Age of } \\ \text { Building } \end{gathered}$	\% Depr.	\% Good	Effective Year Built
0	0	100	2015
1	1	99	2014
2	2	98	2013
3	2	98	2012
4	3	97	2011
5	3	97	2010
6	4	96	2009
7	4	96	2008
8	4	96	2007
9	4	96	2006
10	5	95	2005
11	5	95	2004
12	5	95	2003
13	5	95	2002
14	6	94	2001
15	6	- 94	2000
16	6	94	1999
17	-	94	1998
18	6	94	1997
19	7	93	1996
20	7	93	1995
21	7	93	1994
22	7	93	1993
23	7	93	1992
24	8	92	1991
25	8	92	1990
26	8	92	1989
27	8	92	1988
28	8	92	1987
29	9	91	1986
30	9	91	1985
31	9	91	1984
32	9	91	1983
33	9	91	1982
34	9	91	1981
35	10	90	1980
36	10	90	1979
37	10	90	1978
38	10	90	1977
39	10	90	1976
40	10	90	1975
41	11	89	1974
42	11	89	1973
43	11	89	1972
44	11	89	1971
45	11	89	1970

46	11	89	1969
47	12	88	1968
48	12	88	1967
49	12	88	1966
50	12	88	1965
51	12	88	1964
52	12	88	1963
53	12	88	1962
54	13	87	1961
55	13	87	1960
56	13	87	1959
57	13	87	1958
58	13	87	1957
59	13	87	1956
60	14	86	1955
61	14	86	1954
62	14	86	1953
63	14	86	1952
64	14	86	1951
65	14	86	1950
70	15	85	1945
75	16	84	1940

Vision Commercial CAMA Valuation Process

The market-derived cost approach to the valuation of real estate follows the generic formula of Market Value $=(($ RCN LD $)+$ land value $)$, where RCN is Replacement Cost New of the improvements and LD means Less Depreciation. When properly developed and calibrated, this approach is a reliable indicator of market value especially suited to mass-appraisal CAMA systems.

The following exercise will attempt to illustrate how the Vision ${ }^{\oplus}$ CAMA system utilized by the District of Columbia, calculates values using the above model. The first portion will illustrate the development of the Replacement Cost New of a small commercial building, and the last portion will show the steps involved in determining the amount of depreciation that has accrued to the building. Land valuation is not discussed in this exercise.

Replacement Cost New

The Vision© CAMA system arrives at a RCN value for commercial properties based on a market-calibrated hybrid cost model. The hybrid nature of the model simply means that the model employs both additive and multiplicative variables in its design and specification. The nature of the model will become clearer as we proceed through this exercise. Please also be aware that a model is dynamic in both its specifications and calibration. The specifications, those cost elements that comprise the model, may change from time to time based upon research and market conditions. The calibration of the model is primarily derived from information provided by the Marshall and Swift Valuation Service, a company that provides building cost data necessary for real estate cost valuations and is widely considered the authority on the cost approach to valuation. As you may discover, the dollar rates, or calibrations, contained here most likely are different from the current model in use. The model used in this exercise is as follows:

> Building RCN = [Section ${ }_{1}$ (Base Rate * Effective Area * Size Adjustment) * $\left(M V_{1}\right.$ * M_{2} * ... * MV $\left.\left.{ }_{n}\right)\right]+$ [Section ${ }_{\mathrm{n}}$ (Base Rate * Effective Area * Size Adjustment) * (MV_{1} * MV_{2} * ... * MV n)] + [\sum Special Building Features]

[^0]Several items will be helpful while examining the features of the cost model and they are collected as Appendix "A" of this document. You will need to refer to them often during this exercise. They include the following:

- Sample building's Property Record Card (PRC)
- Cost.dat printout of the sample building
- Depreciation Schedule
- 2016 CAMA Construction Valuation Guideline - Commercial

The commercial building designed for this exercise is typical of a small commercial property in the District. It consists of a one-story full service restaurant and an adjoining two-story building. The two-story section consists of a package goods store and a small apartment on the second floor. The building is of good quality and is constructed of brick veneer over concrete block. For this exercise, the building has been logically sectioned into two sections. Section 1 covers the restaurant and Section 2 covers the package goods/apartment portion.

Below shows the Construction Detail in the CAMA record of the building. The first illustration depicts Section 1 - the restaurant and the second represents Section 2 - the package goods store and apartment.

Base Rate Values		
Value Source C		Living Area/GBA 5,400
Prim Bldg Use 45		Effective Area 8,460
Style		size Adjustment 1.2386
Style	C: Brick/Concr	
Model:	94: Commercial	
Grade	40: Good \rightarrow	
Stories	2	
\# Units	1.00	
Shape/Peri	2: Rectangular	
CDU	VG: Very Good	
1st Floor Occ	045	
Prim Bldg Use	045	
Exterior Finish	C: Concrete	
Wall Height	12,00	
Structure Class	C: Brick/Concr \quad -	

Illustration 2

Illustration 3 shows the CAMA sketch of the sample building we'll be using throughout this exercise.

1. First, let's illustrate the calculation of the Effective Area of our sample building's first section, the restaurant.
```
Building RCN = [Section \({ }_{1}\) (Base Rate * Effective Area * Size Adjustment)
    \(\left(\mathrm{MV}_{0}\right.\) * \(\mathrm{MV}_{2}\) * ... * \(\left.\left.\mathrm{MV}_{\mathrm{n}}\right)\right]+\)
    [Section \({ }_{n}\) (Base Rate * Effective Area * Size Adjustment) *
    \(\left(\mathrm{MV}_{0}\right.\) * \(\mathrm{MV}_{2}\) * \(\ldots\) * \(\left.\left.\mathrm{MV}_{\mathrm{n}}\right)\right]\) +
    [ \(\Sigma\) Special Building Features]
```


Illustration 5
The Effective Area is comprised of the totals of the Bas(1) Main Building Area @ 1,800 SF and the BM5(1) Basement, Full Finish @ 1,800 SF for a total of 3,600 SF.

The second section's Effective Area is calculated in the same manner.

BAS(2) Main Building Area, BM4 (2)Basement Semi-finished, and FUS (2) Upper Story, Finished total $4,860 \mathrm{SF}$. The adjustment to the semi-finished basement takes into account this area is not as expensive as the finished main building area. For example, if the base rate for the finished main building area is $\$ 100 / S F$, the rate for the semifinished basement area may only be \$70/SF. The RCN value of the basement would be calculated as follows:

$$
\text { RCN of Basement }=\$ 126,000 \text { or (1800 SF * } \$ 70 \text {) }
$$

Another way to state the same situation is to adjust the size of the basement to 70% of its measured size and then multiply the resulting, or effective, size by the base rate of \$100/SF:

$$
\text { RCN of Basement }=\$ 126,000 \text { or }[(1800 \text { * .70) * } \$ 100]
$$

Both methods arrive at the same value for the basement. The first method is more intuitive and easier to explain to taxpayers as it adjusts for the differences in costs for the various areas. The second method again provides the same results but is much easier to model and calculate within a CAMA system, thus the effective area calculations shown here represent the methodology employed in the Vision ${ }^{\ominus}$ CAMA system.

The Gross Area shown in Illustration 2 is the total unadjusted size of all the areas that are a part of the building. The Living Area is more properly called "Gross Floor Area" and is the unadjusted size of the actual finished floor area above grade in the building.

With the inclusion of the Effective Area calculation, our cost model now looks like this:

```
Building RCN = [Section1 (Base Rate * 3600 * Size Adjustment) *
                        Effective Area
    (MV * * MV % * ... * MV n)] +
    [Sectionn (Base Rate * 4860 * Size Adjustment) *
                                Effective Area
    (MV * * MV % * .. * MV ) ] +
    [ \sum Special Building Features]
```

2. Next, let's look at the selection of the Base Rate for the sample building. There will be two rates because there are two different sections. Each section's RCN will be independently calculated.
```
Building RCN = [Section (Base Rate * Effective Area * Size Adjustment) *
    (MV * MV 2 * .. * MV )] +
    [Section (Base Rate * Effective Area * Size Adjustment) *
    (MV * MV % * .. * MV )] +
    [ }\Sigma\mathrm{ Special Building Features]
```

The Base Rate is the dollar rate per square foot used in the valuation model that is derived from tables within the CAMA system. It is selected based on the building's Building Occupancy (Use) Code and Construction Class. Our sample's first section is a "45-Store-Restaurant" constructed as a Class "C", concrete block/brick building. Based on this information, the Base Rate of $\$ 180.25$ is automatically selected.
The second section, "47-Store-Super Market", also constructed as a Class "C", concrete block/brick building, has a Base Rate of $\$ 103.14$.

With the inclusion of the selected Base Rates, our model now looks like this:

```
Building RCN = [Section ( $180.25 * 3600 * Size Adjustment) *
                        Base Rate Effective Area
    (MV * * MV % * ...* MV n)] +
    [Sectionn ($103.14 * 4860 * Size Adjustment) *
        Base Rate Effective Area
    (MV % * MV % * ... * MV ) ] +
    [ }\sum\mathrm{ Special Building Features]
```

3. Next, let us turn our attention to a modification to the Base Rate - the Size Adjustment.
```
Building RCN = [Section (Base Rate * Effective Area * Size Adjustment) *
    (MV * * MV 2 * .. * MV )] +
    [Section (Base Rate * Effective Area * Size Adjustment) *
    (MV * MV 2 * .. * MV )] +
    [ }\Sigma\mathrm{ Special Building Features]
```

The Size Adjustment modifies the Base Rate to account for the size difference between the "standard size" for the "typical" building of a particular occupancy type and the actual size of the sample building. The comparison is based on the building's "gross floor area." The "standard" size of 5,000 square feet for the "typical" restaurant is used as the basis for establishing the initial Base Rates used in Section 1 of this appraisal.

The "standard" size of 4,000 square feet for the "typical" retail-misc. is used as the basis for establishing the initial Base Rates used in Section 2.

The adjustment in the Base Rate allows the proper square foot rate to be applied to a building based on its size. It is reasonable to expect that as a building becomes larger than typical, the rate per square foot would decrease and conversely, if the building were smaller than typical, the rate would be higher. The Size Adjustment variable is the component in the model that adjusts for this situation. Our sample building's size, the "gross floor area," is the total area of both sections, 5,400 square feet. Our building is only slightly larger than the standard size of 5,000 square feet. The Size Adjustment is 1.16763. Now our Adjusted Base Rate is calculated to be $\$ 223.26$ ($180.25 * 1.23860$) for Section 1 and $\$ 127.75$ (103.14 *1.23860) for Section 2 of our example.

Because the adjustment is larger than 1.00, it would be proper to conclude that our sample building is smaller than the typical building of its type in the District of Columbia. Our sample building was compared to the larger of the two "standard" sizes, 5,000 square feet. Had the sample building been smaller than 5,000 square feet, the Size Adjustment would have been greater than 1.00. The use of size adjustments eliminates the need for the traditional cost tables based on size.

The cost model continues to grow, and now looks like this:

```
Building RCN = [Section ( $180.25 * 3600 * 1.23860) *
                        Base Rate Effective Area Size Adjustment
    (MV * * MV 2 * .. * MV n)] +
    [Section
                Base Rate Effective Area Size Adjustment
    (MV * *MV * * .. * MV )] +
    [ }\Sigma\mathrm{ Special Building Features]
```

4. The next portion of the cost model used to calculate the RCN are the multiplicative variables (MV).
```
Building RCN = [Section \({ }_{1}\) (Base Rate * Effective Area * Size Adjustment) *
    \(\left.\left(\mathrm{MV}_{0}{ }^{*} \mathrm{MV}_{2}{ }^{*} \ldots{ }^{*} \mathrm{MV}_{\mathrm{n}}\right)\right]\) +
    [Section \({ }_{n}\) (Base Rate *Effective Area *Size Adjustment) *
        \(\left(\mathrm{MV}_{0}\right.\) * \(\mathrm{MV}_{2}\) * \(\ldots\) * \(\left.\mathrm{MV}_{\mathrm{n}}\right)\) ] +
    [ \(\Sigma\) Special Building Features]
```

This portion of the formula can have the largest influence on the cost model. Each multiplicative variable modifies all of the cost data that has preceded it. These variables modify the Base Rate and Size Adjustment. This is where such important characteristics as the CDU (condition, desirability, utility), building grade, local cost multipliers, Neighborhood and Sub Neighborhood location factors have their impact.

The CDU, or Condition Desirability Utility, is the first of our multiplicative variables. This variable is used to account for a property's general overall physical condition and to a lesser extent the desirability and the utility of the property. Our sample building has been listed as "Good" and the appropriate multiplicative variable is 1.15. Stated a different way, the "Good" CDU will increase the RCN of our building by 15%. This one variable, CDU, can have a profound impact on the RCN of a building. The range can increase the RCN for an "Excellent" building by 35\% all the way down to a 90% reduction in RNC for an "Unsound" building.

The sample building is graded "Good Quality - 4", and consequently has a 1.12 multiplicative variable. This one variable, grade, is going to increase the RCN value of the sample building by 12\%. Another MV, "DC Local Multiplier C" modifies costs to account for the small additional costs incurred in construction of "C" class buildings in the in the DC area. The other multiplicative variable, "COMM NBHD 9", is the local neighborhood multiplier established for the particular neighborhood where the sample building is located. This variable is going to increase the RCN value of the sample building by 10\%. The "COMM NBHD" adjustment reflects the market-derived fact that location is a very significant factor in the value of real estate. Two otherwise identical buildings can have a substantial difference in value based on their locations.

These four variables are summarized in the Cost.dat file as follows:

```
**************Factor Adjustments*
CONDITION DESIRABILITY UTILITY G = 1.150 X RCN
    GRADE 40 (Good) = 1.120\timesRCN
    COMM NBHD 9 = 1.1 x RCN
```

Each MV is multiplied together to determine the combined, or overall, MV. The sample building's MV is 1.4168 (1.15 * 1.12 * 1.1).
5. Except for the Special Building Features, our RCN model is complete and contains the specific data for the sample building used in this demonstration. The RCN cost model for the sample building is as follow:

```
Building RCN = [Section ( $180.25 * 3600 ** 1.23860) *
    ( 1.4168 )] +
        Multiplicative Variables
    [Sectionn ($103.14 * 4860 * 1.23860) *
                        Base Rate Effective Area Size Adjustment
        ( 1.4168 )] +
        Multiplicative Variables
    [ \ Special Building Features]
```

The RCN for Section 1, the restaurant is $\$ 1,138,733(\$ 180.25$ * $3600+0)$ * 1.23860 * 1.41680). The package goods store's RCN is \$879,642 (\$103.14 * 4860 * 1.23860 * 1.41680).

The Cost.dat file shows a summary of the same information as follows:

Section \#1

Base Rate: 180.25
Size Adjustment: 1.23860
Effective Area: 5400
Adjusted Base Rate $=(180.25+0)$ * 1.23860
Adjusted Base Rate: 223.26
$\mathrm{RCN}=((223.26$ * $(3600+0)+0)$ * 1.4168
RCN: 1138733
Section \#2
Base Rate: 103.14
Size Adjustment: 1.23860
Effective Area: 5400
Adjusted Base Rate $=(103.14+0)$ * 1.23860
Adjusted Base Rate: 127.75
$\operatorname{RCN}=((127.75 * 4860)+0) * 1.41680$
RCN: 879642
So far, the RCN of the building is $\$ 2,018,375(1,138,733+879,642)$. We still have Special Features to add to complete the cost model.
6. The Special Features component is the last portion of the cost model. This is the place where such things as sprinklers and HVAC systems are accounted for and valued in the building.

```
Building RCN = [Section \({ }_{1}\) (Base Rate * Effective Area * Size Adjustment) *
( \(\mathrm{MV}_{0}\) * \(\mathrm{MV}_{2}\) * ... * \(\mathrm{MV}_{\mathrm{n}}\) )] +
    [Section \({ }_{n}\) (Base Rate * Effective Area * Size Adjustment) *
    ( \(\mathrm{MV}_{0}\) * \(\mathrm{MV}_{2}\) * ... * \(\mathrm{MV}_{\mathrm{n}}\) )] +
    [ \(\Sigma\) Special Building Features]
```

Take a look at illustration 7. Here we see that both sections are sprinklered and heated and cooled with a complete HVAC system. Both of these Special Building features are calculated based on the size, in square feet, of the area affected. Their value is determined by the size, dollar rate and quality grade for each feature. Finally, the Special Building Features are depreciated at the same rate as the main buildings.

Illustration 7
Illustration 8 shows the data-entry screen, as it would look if we were to add an elevator to the building.

Note that this extra feature's UOM (unit of measurement) is by count and not SF. For each count, the unit price is $\$ 35,250$. Be sure that the UOM is proper for the individual special feature included in the building.

The total RCN of the Special Feature in this sample is $\$ 67,266$ (\sum Special Building Features $=16,542+8,820+33,084+8,820)$.

We now know the total replacement cost new (RCN) of our sample building, including Special Features, is $\$ 2,085,641(\$ 2,018,375+\$ 67,266)$.

\$2,778,884 = Building RCN	

If the sample building were brand new, we'd be finished, but it was actually built in 1953.
Next, we need to address accrued depreciation . . .

Depreciation

Depreciation is defined as a loss in the upper limits of value from all sources. Typically, three types of depreciation can affect real estate - physical deterioration, functional obsolescence and economic obsolescence. This next portion of the demonstration will illustrate how Vision ${ }^{\ominus}$ calculates the amount of depreciation accrued to our sample building.

Several terms come into use when discussing depreciation in CAMA. They are defined as follows:

- Actual Age: The mathematical difference between the Base Year and the actual year the improvement was built to completion.
- Actual Year Built (AYB): The earliest time the main portion of the building was built. It is not affected by subsequent construction.
- Base Year: The year, usually the current year, that the depreciation table is calibrated, such that the age of a building built during the base year would be 0 years old.
- Depreciation Table: A market-driven table that lists the amount of depreciation corresponding to an Effective Year Built and the Base Year predicated upon a specific economic life.
- Economic Life: The useful life span for a structure based on its occupancy (use) code and its construction class.
- Effective Age: The mathematical difference, in years, between the Base Year and the Effective Year Built.
- Effective Year Built (EYB): The calculated or apparent year, that an improvement was built that is most often more recent than AYB. The EYB is determined by the condition and quality of the improvement. Subsequent renovation, additions, upgrades and the like, extend an improvements remaining economic life and therefore cause the EYB to be closer to the Base Year than the AYB.
- Percent Good: The mathematical difference between 100 percent and the percent of depreciation. (100\% - depreciation \%) = percent good

The RCN model used above indicated that our sample building has an RNC of $\$ 2,778,884$. As stated earlier, the building was built in 1953 , so there should be some depreciation to deduct from the RCN. We'll use a seven-step process to depreciate the improvements:

1. Calculate the Actual Age of the improvement.
2. Determine the Effective Age of the improvement.
3. Determine the improvement's Effective Year Built.
4. Look-up Depreciation corresponding to EYB on depreciation table.
5. If required, modify the depreciation by the amount given for obsolescence.
6. Apply final depreciation to RCN to determine RCN-LD.
7. Our first step is to calculate the Actual Age of our sample building. As you are aware, a valuation is always qualified as of a specific date. For ad valorem purposes in the District of Columbia, the valuation date is January 1 immediately preceding the tax year. In our example, the tax year is 2016, therefore the valuation date is January 1, 2015. This date is also significant in terms of the depreciation accrued to improvements. In the past, the nature of triennial assessments required that base years within a Tri-Group remain unchanged for a period of three years. Now, however, with the return to annual assessments, the base year coincides with the valuation date. The base year is used to determine the Actual Age of the sample building. In this case, the Actual Age of the sample building is 62 years (2015-1953).
8. The next step is to determine the sample building's Effective Age. Effective Age may or may not represent actual or chronological age. The premise is simple but the application can be confusing. If a building is built and never maintained (painting, reroof, etc.) or remodeled, the building would quickly depreciate from physical deterioration. The CAMA system would depreciate the building at the fastest rate possible based on the selected Depreciation Table. For example, our building has an economic life of sixty years. If the building were left to rot, the Effective Age would most likely be the same as the Actual Age.

Let's say the owners of our sample building have completely neglected their property from the time it was built in 1953 to the present. Their building would have an effective age of 62 years as indicated on the Depreciation Table below:

Illustration 9

The Actual Year Built (1953) and the Effective Year Built (1977) the Effective Age would be 38 years. Moving across the table, we see that a building with an EYB of 1977 has 28 percent depreciation and therefore is 72 Percent Good (100\%-28\%). If the RCN of our sample building is $\$ 2,085,641$ the depreciated value, RCN-LD, is only $\$ 2,000,796$ (2,778,884 * 0.72).

The situation described above rarely, if ever, occurs in the market. People do maintain and renovate their buildings and in doing so, extend the building's useful or remaining economic life. As building owners repair roofs, paint siding, replace windows and furnaces, they prolong the life of the building and consequently decrease its Effective Age.

A recent building remodel, renovation or rehabilitation will go a long way to extend its useful life. As the useful life is extended, the Effective Age is reduced and therefore the Effective Year Built is more recent than the building's Actual Year Built.

Our sample building had a major renovation done in 1998. The portion of the CAMA record that captures this information is shown in Illustration 10 below.

Two factors come together to determine the impact a remodel has on the amount of depreciation calculated for the building - the Remodel Rating and the Year Remodeled. How extensive the remodel is and how recently it has occurred combines to determine its overall affect on its effective year built, and in turn, the building's depreciation. A brand-new gut rehab would substantially decrease the effective age of a building much more so than an older remodel. Conversely, an older remodel may have little or no affect on the depreciation.

We'll see the significance of that renovation in a moment, but first, back to our sample building's Effective Age calculation.

The construction class of the building also affects the calculation of Effective Age. It is only natural that an "A" class structure would have a longer economic life than a "D" class building (recall the story of the three little pigs). The Structure Class Age Factor makes allowance for this situation by reducing the effective age of an "A" class building by more than, say, a "D" building. As an example, CAMA reduces the effective age by 20% for "A" buildings, 15% for " B " structures, 10% on " C " buildings, and no adjustment for the "D" class buildings.

The features or variables dealing with the effective age calculation are multiplicative variables. As such, they are multiplied one by the other and then the Actual Age is multiplied by the product of the MVs. Below is the portion of the Cost.dat file that summaries these MV for our sample building.

The product of each of these MV adjustments is calculated to be 0.46575 (0.45 * 0.90 * 1.5). This product is then multiplied by the Actual Age to calculate the Effective Age. Recall our sample building's Actual Age is 62 years. The Effective Age is calculated to be 38 years (62 * 0.6075). Instead of CAMA using 62 chronological years to calculated depreciation, it will use 38 years, based on the building's quality and renovation. The portion of the Cost.dat file that illustrates this information is below:

Actual Year Built: 1953
Effective Age $=62 * .6075$
Effective Age: 38
Percent Good $=72$
RCNLD:819890
Back to our renovation, the 1998 major renovation done to the building reduced the effective age to 60.75% (Rehab Factor $3=.45$ * Rehab Year $=1.5$) of the 62 years of actual age, resulting in an effective age of 38 years old. What impact on the effective age would there be if just a small remodel occurred in 1990 ? We would expect the effective age not to shorten, or decrease, as much. Let's see what happens.

As you know, CAMA has many calibrated variables associated with all of the calculations it makes to determine the RCN and calculate depreciation. Again, the two variables that come into play here are the Rehab Factor and the Rehab Year. We've just seen the values of those variables were with regard to the recent major renovation example. For the 1990 remodel the values are: Rehab Factor 4= 0.55 and Rehab Year $=1.5$. This combination will reduce the effective age to $82.5 \%(0.55 * 1.5)$ of the 62 years of actual age, as a result, making the effective age now 31 years old.

The difference between the two scenarios is seven years. Without doing all math, the difference in the appraised value as a result an effective age of 38 years verses 31 years is about $\$ 200,000$ on a building with a RCN of $\$ 2,085,641$. The proper documentation of remodel activity is significant when arriving at proper appraised values.
3. We're almost finished. Knowing the Effective Age makes the calculation of the Effective Year Built for our sample building very simple. The Effective Year Built is 1977 (2015-38).
4. Having established the Effective Year Built, we look up 1977 on the 60 Year Economic Life Depreciation Table and find that the Depreciation is 28% for that year. See Illustration 11.

You may notice that there is a conflict between the Cost.dat file and the depreciation table with regards to "Percent Good." The Cost.dat file report that our building's percent good is 74, whereas the depreciation table says it's 83. The explanation is addressed in step 5, dealing with obsolescence and direct adjustments to depreciation, not effective year built calculations.
5. If the assessor notes any obsolesce, this is where it is addressed. Recall from the outset that we defined depreciation as a loss in value resulting from physical deterioration, functional and/or economic obsolescence. The demonstration up to this point has dealt only with depreciation attributed to the physical deterioration of the sample building. This, by far, is the most common type of depreciation that exists in commercial property. However, occasions may require additional depreciation because of excessive physical deterioration, functional and/or economic obsolescence. One must use caution when invoking these types of depreciation. The market must support any decision regarding the extent of these adjustments.

Our sample building is suffering from a small amount of functional obsolescence. The assessor has noted that the interior design of the building contains many support columns interrupting the efficient use of the floor space. As a result, the restaurant has a few less tables and the package goods store does not have a good aisle layout. Consequently, it is appropriate to allow for a small amount of functional obsolescence five percent.

Illustration 12 shows the results of this additional allowance for functional obsolescence. Whereas the depreciation table in illustration 3 shows the percent good for 31 years at 83%, by subtracting the 11% attributed to functional obsolescence, we are left with 72% (rounding error) as the percent good for our building. This matches the figure shown in the Cost.dat file.

The actual mechanics of adjusting depreciation for functional or economic obsolescence within CAMA are briefly discussed below. If the situation occurs, seek guidance from your supervisor and/or CAMA manager.

The "Status" field's pick-list is expanded in Illustration 13 to show only those types of items that have a direct affect on depreciation and the nature of the affect. Notice that only a limited number of Status Codes are functional within CAMA and their affect on depreciation is either to replace the existing amount in the "\% Good" field or decrease the "\% Good." The corresponding numeric amount that will affect the "\% Good" is entered in the field called "Percent Complete." Please note that the field name "Percent Complete" is somewhat erroneous because the word "Complete" has no meaning in this context. This is the field that you will enter the amount to either decrease the existing "\% Good" or replace the existing "\% Good", based on the Status Code selected.

illustration 13
6. The last step in the process is to simply multiple the RCN by 0.72 and we have RCN LD of the building. Knowing the total RCN of our sample building is $\$ \$ 2,085,641$, the RCN LD is $\$ 1,501,662$ ($\$ 2,085,641$ * 0.72).

Conclusion

This exercise has been prepared to assist the commercial assessor understand some of the concepts, features and techniques employed by the Vision ${ }^{\ominus}$ CAMA system in arriving at a cost approach to valuation of commercial properties in the District of Columbia. It does not serve as an exhaustive training manual. Any specific questions regarding the features and operations of this CAMA should be directed to your supervisor or the CAMA manager.

Appendix "A"

1. Property Record Card, SSL 99998888
2. Cost.dat print-out, SSL 99998888
3. Land.dat print-out, SSL 99998888
4. CAMA Construction Valuation Guideline


```
OUTPUT FROM NEW COST MODELING ENGINE
REPORT GENERATED ON 27-Feb-2015 AT 09:39
***************Building #1 Calc Start****************
Cost Calculation for pid, bid = 183145,173784
Account Number = 9999 8888
Use Code = 045
Cost Rate Group = RS1
Model ID: = DCC
Section #2
Section Use: Store-Super Market
Base Rate: 103.14
Size Adjustment: 1.23860
Effective Area: 5400
Adjusted Base Rate = (103.14 + 0)*1.23860
Adjusted Base Rate: 127.75
RCN = ((127.75 * 4860 + 0.0000000000000000000) * 1.4168000000000000) + 0
RCN: }87964
******************Factor Adjustments*******************
GRADE 40 = 1.120 x RCN
COMM NBHD 9 = 1.100 x RCN
CONDITION DESIRABILITY UTILITY G = 1.150 x RCN
******************Effective Age Adjustments*******************
STRUCTURE CLASS AGE FACTOR C = 0.900 x Age
CDU AGE FACTOR G = 1.000 x Age
REHAB FACTOR 3 = 0.450000 x Age
REHAB YEAR 1997 = 1.500 x Age
Actual Year Built: }195
Effective Age = 38
******************Depreciation Adjustments*******************
CDU DEPREC FACTOR G = 1.000 x Depreciation
Percent Good = 72
RCNLD: }63334
```


Section \#1

Section Use: Store-Restaurant
Base Rate: 180.25

Effective Area: 5400
Adjusted Base Rate $=(180.25+0)$ * 1.23860
Adjusted Base Rate: 223.26
$R C N=((223.26 * 3600+0.0000000000000000000) * 1.416800000000000)+0$
RCN: 1138733
******************Factor Adjustments*******************
GRADE $40=1.120 \times$ RCN
COMM NBHD $9=1.100 \times$ RCN
CONDITION DESIRABILITY UTILITY $G=1.150 \times$ RCN
******************Effective Age Adjustments*******************
STRUCTURE CLASS AGE FACTOR C $=0.900 \times$ Age
CDU AGE FACTOR G $=1.000 \times$ Age
REHAB FACTOR $3=0.450000 \times$ Age
REHAB YEAR $1998=1.500 \times$ Age

Actual Year Built: 1953
Effective Age $=38$
******************Depreciation Adjustments*******************
CDU DEPREC FACTOR G = $1.000 \times$ Depreciation

Percent Good $=72$
RCNLD: 819890

Base Year 2015

Age of Building	Effective Year Built
0	2015
1	2014
2	2013
3	2012
4	2011
5	2010
6	2009
7	2008
8	2007
9	2006
10	2005
11	2004
12	2003
13	2002
14	2001
15	2000
16	1999
17	1998
18	1997
19	1996
20	1995
21	1994
22	1993
23	1992
24	1991
25	1990
26	1989
27	1988
28	1987
29	1986
30	1985
31	1984
32	1983
33	1982
34	1981
35	1980
36	1979
37	1978
38	1977
39	1976
40	1975
41	1974
42	1973
43	1972
44	1971
45	1970
46	1969
47	1968
48	1967
49	1966
50	1965
51	1964
52	1963
53	1962
54	1961
55	1960
56	1959
57	1958
58	1957
59	1956
60	1955
61	1954
62	1953
63	1952
64	1951
65	1950
70	1949

70 Year Economic Life	
Percent of Depreciation	$\begin{aligned} & \text { Percent } \\ & \text { Good } \end{aligned}$
0	100
0	100
0	100
0	100
1	99
1	99
1	99
1	99
1	99
2	98
2	98
2	98
2	98
2	98
3	97
3	97
3	97
4	96
4	96
4	96
5	95
5	95
6	94
6	94
7	93
7	93
8	92
9	91
9	91
10	90
11	89
12	88
13	87
14	86
15	85
16	84
17	83
18	-82
19	81
20	80
21	79
23	77
25	75
26	74
$\square 28$	72
29	71
- 31	69
32	68
- 34	66
36	64
38	62
40	60
42	58
44	56
46	54
48	52
50	50
52	48
54	46
56	44
57	43
59	41
61	39
63	37
64	36
65	35
71	29

60 Year Economic Life	
Percent of Depreciation	$\begin{aligned} & \text { Percent } \\ & \text { Good } \end{aligned}$
0	100
0	100
0	100
1	99
1	99
1	99
1	99
1	99
2	98
2	98
2	98
2	98
3	97
3	97
3	97
4	96
4	96
5	95
5	95
6	94
6	94
7	93
8	92
9	91
9	91
10	90
11	89
-13	87
-14	86
15	85
16	84
17	83
18	82
$\begin{array}{r}20 \\ \hline 21\end{array}$	80
$\square \quad 21$	79
23	77
- 25	75
26	74
28	72
31	69
32	68
34	66
36	64
38	62
40	60
44	56
46	54
48	52
50	50
52	48
54	46
57	43
59	41
61	39
63	37
64	36
65	35
67	33
69	31
70	30
71	29

50 Year Economic Life	
Percent of Depreciation	Percent Good
0	100
0	100
0	100
1	99
1	99
1	99
1	99
2	98
2	98
2	98
3	97
3	97
4	96
4	96
5	95
5	95
6	94
7	93
7	93
9	91
9	91
10	90
12	88
13	87
15	85
16	84
17	83
19	81
20	80
23	77
25	75
26	74
29	71
31	69
34	66
36	64
38	62
42	58
44	56
48	52
50	50
52	48
56	44
57	43
61	39
63	37
64	36
66	34
67	33
70	30
71	29

CONSTRUCTION DETAIL

Section Detail

No. Description Value

Building Stories
 As Indicated.
 Occupancy
 As Indicated.
 Select from list.

Stories and \#Units
As Indicated.

Structure Class

O	Default
A	Fireproof Steel
B	Reinforced Concr
C	Con. Block/Solid
D	Wood Frame
P	Wood Pole
S	Steel/Sheet Met
Exterior	
Oinish	
AS	Typical
BR	Asphalt Siding
BV	Brick (Solid)
C	Concrete
CB	Concrete Block
MS	Metal Siding
S	Stone
SU	Stucco
SV	Stone Veneer
WS	Wood Siding

Grade (Multiplies Base, Features)		
0	Default	--
0	Poor Quality	-30%
15	Poor+ Quality	-20%
20	Fair Quality	-10%
25	Fair+ Quality	-05%
30	Average Quality	--
35	Average+ Quality	06%
40	Good Quality	12%
45	Good+ Quality	21%
50	Very Good Quality	30%
55	Very Good + Quality	38%
60	Excellent	45%

Story Height (Multiplies Base)

Currently not in use
Wall Height (Adds to Base Rate)
Currently not in use
CDU Condition, Desirability, Utility (Multiplies Base, Features)

EX	Excellent	35%
VG	Very Good	30%
G	Good	15%
AV	Average	--
F	Fair	-25%
P	Poor	-50%
VP	Very Poor	-70%
US	Unsound	-90%

DEPRECIATION DETAIL

No. Description Value

Structure Class (Adjust EYB)

0	Default	0
A	Fireproof Steel	-20%
B	Reinforced Conc.	-15%
C	Con. Block/Brick	-10%
D	Wood Frame	0
S	Steel/Sheet Metal	0

Remodel Rating (Adjusts		
0	EYB)	
1	Default	--
2	Unknown	-10%
3	Gut Rehab	-70%
4	Major Renovation	-55%
5	Remodel	-45%
6	Addition	-30%
	Cosmetic	-10%

Year Remodeled (Adjust EYB)	
$2011-2014$	0%
$2009-2010$	5%
$2004-2008$	15%
$1999-2003$	25%
Earlier-1998	50%

Extra Features (Flat and Sq Ft Add)

BL	Balcony	Flat
ELEV	Elevators	Flat
HVAC	Heat \& Cool	Sq. Ft.
MZ	Mezzanines	Sq. Ft.
SPRK	Sprinklers	Sq. Ft.

Where:

RCN = Replacement Cost New Base Rate $=\$$ rate based on occupancy (use) code and construction class
Section $_{n}=$ Each separate building or section of building
Effective Area $=$ Adjusted SF area of improvement
Size Adjustment $=$ Adjustment factor for deviation from base size MV = Multiplicative Variables

Vision ${ }^{\circledR}$ CAMA Income Approach Valuation Process

The income approach to the valuation of real property follows the generic formula of Market Value $=\mathbf{N O I} /$ Capitalization Rate, where NOI is the net operating income of the property and the Capitalization Rate is a marketderived overall direct capitalization rate. When properly developed and calibrated, this approach is a reliable indicator of market value of income producing properties within a mass-appraisal CAMA system.

The following exercise will illustrate how the Vision ${ }^{\circledR}$ CAMA system utilized by the District of Columbia calculates values using the above model. The first section will illustrate the traditional development of a market value estimate for a typical apartment building. This example will serve to provide a practical foundation for understanding the concepts of the income approach to valuation as well as an understanding of the major components of the Vision ${ }^{\ominus}$ CAMA methodology. The second section will illustrate the actual CAMA valuation of the apartment building described in the first section.

Income Approach to Value

An understanding of the income capitalization approach to value is essential in order to utilize the Vision ${ }^{\ominus}$ CAMA system's income model. Of the three traditional approaches to value (cost, market, income), the income approach is most often the appropriate approach when appraising property owned for it's ability to produce income to the owner. An owner anticipates future income production and the income approach quantifies the present value of the income derived from the ownership of the property. There are several varieties or forms of the income approach used to quantify or convert income into an estimate of value. The most widely used approach is direct capitalization. Direct capitalization involves converting one year's stabilized net operating income into an estimate of value in one direct step using an appropriate rate. The direct capitalization method is rooted in the market. The rate used to convert income into value represents the relationship between value and income through the following formula:

Formula 1

To determine an estimate of value, divide the income by the rate. The income is the net operating income (NOI) and the rate is the direct capitalization rate. For example, if a property generates an NOI of $\$ 500,000$ per year and the marketderived capitalization rate is 5 percent, the indicated value would be $\$ 10,000,000$ (\$500,000/.05).

Where do these two numbers come from? The first number, NOI, is determined by a combination of things. First, the income and expenses of the particular property are analyzed and "re-constructed" to produce the NOI. Re-constructing simply means that we analyze the income and more particularly the expenses to ensure that we have a true understanding and estimate of the amount of net operating income annually produced by the property. Oftentimes an income report will detail some expenses not directly associated with the property. For example, the debt service of a loan on the property may be subtracted from the gross income. This is not a proper expense as it is a function of the owner's financing and not an operating expense of the property. Another example may be a large "expense" taken against gross income that should be more properly spread over several years, or capitalized. Expense ratios are calculated for the various categories of expenses.

Another source for determining the NOI of a property is the analysis of many other similar properties for their income levels and expense levels or ratios. If the subject property's income and expenses are typical for similar properties, the actual NOI of the property becomes the amount to be capitalized by the rate. If, on the other hand, the property exhibits unusual income or expenses based on comparison of the ratios, some actual amounts of income or expenses may be substituted with the amounts represented by more typical ratios. The goal is to establish the typical level of NOI that a prudent investor would anticipate deriving from the property each year.

Where does the rate come from? The rate is the overall direct capitalization rate. This is the rate for the overall property used to convert a single year's income into an indication of value of the overall property using the IRV formula shown above. The rate is derived through sales analysis. Ideally, where arms-length sales of similar properties occur and the income and expense data are well known, a direct capitalization rate can be derived using the IRV formula. For example, suppose the subject property is an office building and a similar office building recently sold for $\$ 750,000$. The reconstructed income and expense analysis indicated that at the time of sale the property was producing an annual net operating income of $\$ 60,000$. Using the IRV formula, the capitalization rate of the property was 8 percent $(\$ 60,000 / \$ 750,000)$. Reliable capitalization rates are the result of the analysis of many sales of income producing properties.

The following illustration is an example of an income and expense statement for our sample property. The property, Breakaway Northwest, is a high-rise apartment complex consisting of a one eight story concrete block building. The building has 164 rental units, a management office, laundry facility and on-site surface parking. It is located close to the Convention Center in NW Washington,
DC. We'll use this property both here and in the example within Vision ${ }^{\circledR}$ CAMA in the second part of this tutorial.

Breakaway Northwest Apartments

- December 31, 2010-

```
Potential Gross Income
    Vacancy & Collection Loss (7%)
    Miscellaneous Income (laundry) (2%)
Effective Gross Income
```


Expenses

```
Operating:
Management (9\%) \$321,200
R.E. Taxes (7\%)
262,000
Insurance (7\%)
Utilities (7\%)
Salaries (6\%)
Marketing (4\%) 130,400
Yard and Snow (2\%) Sub-total (42\%) \(\quad \$ 1,5 \overline{07,850}\)
Reserves for Replacements:
\begin{tabular}{lr} 
Roof (4\%) & \(\$ 150,400\) \\
Parking (3\%) & 121,000 \\
Redecorating (3\%) & 115,948 \\
Appliances (3\%) & 102,400 \\
\multicolumn{2}{c}{ Sub-total (13\%) }
\end{tabular} 245,800 238,700 220,250
```

Total Expenses (55\%)
Net Operating Income (45\%)
\$1,618,234

Capitalization Rate
Indicated Market Value
\$1,997,598

Illustration 1

As you examine the statement, you'll notice a few terms we have not discussed. The potential gross income is defined as the maximum amount of income the property can produce if fully rented at market rent before any expenses are deducted. There will always be some amount to deduct from the potential gross income in the form of vacancy and collection loss. Even if the property is fully
leased, the appraiser must take some vacancy allowance to acknowledge tenant turn-over and inevitable vacancies. It is unrealistic not to allow for some vacancy. Collection loss is that amount deducted from the potential gross income for nonpayment of rent.

In addition to rent, a property may have other sources of income. This miscellaneous income can come from such sources as an on-site laundry facility, furniture rental, community room rentals, vending machines, and the like.

When an amount for vacancy and collection loss is subtracted, and an amount for miscellaneous income is added to the gross potential income, the result is the effective gross income of the property. Expenses are subtracted from, and expense ratios are calculated based upon, the effective gross income.

Expenses usually fall into two categories: operating expenses and reserves for replacements. Sometimes operating expenses may be further divided between variable and fixed expenses. Operating expenses are those legitimate expenses necessary to support the property's ability to produce income. The sample shows some of the more typical expenses incurred by an apartment building. Notice the calculation of the expense ratios mentioned earlier. As an example, the expense ratio for management is nine percent of the effective gross income ($\$ 321,200 / \$ 3,615,832$). These actual ratios are compared to typical ratios to see if any expenses are out of the ordinary. If they are out-of-line and no adequate explanation can be identified, it is appropriate to substitute that category of expense with an amount that would be more normal as indicated by market research. This is an aspect of "re-constructing" the income/expense statement to more properly reflect a stable, normalized net operating income.

Reserves for replacements are a category of expenses that are designed to set aside funds for long lived items that periodically need to be replaced. The amount of the expense is based on the item's economic life and the estimated cost to replace it in the future. Let's say that appliances must be replaced every five years at an estimated cost of $\$ 3,122$ per unit. With 164 units, we need to accumulate $\$ 512,000$ over a five year period. Charging $\$ 102,400$ per year to the reserves for replacements expense allows us to set aside enough money to replace the appliances according to the five year schedule. It is always appropriate to set aside reserves for replacements, even though in practice a property may not have done so. This is another aspect to "re-constructing" the traditional income/expense statement.

Subtracting the total expenses from the effective gross income leaves us with the net operating income of the property. The NOI of the property is the "I" in the IRV formula that will be converted to an indication of value using a capitalization rate.

As mentioned earlier, we employ the direct capitalization of income to produce an estimate of value. The capitalization rates are determined by the analysis of sales of similar properties where the NOI is known. Capitalization rates vary between and within different categories of income-producing properties. Analysis
of the market is necessary to determine the proper rate to apply to the different properties. For example, a capitalization rate for a high quality office building in a prime location will be lower than a capitalization rate for a lower quality office in a less desirable location. With all other things remaining equal and no unusual externalities, capitalization rates for offices are generally less than rates for motels or shopping centers. It all harkens back to the level of return the buyers expect to receive on their investment in commercial real estate. One of their considerations is that the more risk involved with the property, the more return they require thereby raising the capitalization rate resulting in a lower valuation.

In our example, a market-derived capitalization rate for apartments of similar size and location indicate a direct capitalization rate of 5.25 percent. We now know the NOI and the cap rate and by following the IRV formula, we derive the value of Breakaway Northwest to be $\$ 30,823,500$ ($\$ 1,618,234 / 0.0525$).

The above discussion accurately represents the typical application of the income approach to valuation. However, determining valuations for ad-valorem purposes requires one significant modification to the process. Whereas in the above example we considered real estate taxes a legitimate expense, they are not expensed in ad-valorem appraisals. They are removed in our approach to account for the fact that the tax expense is directly determined by the very value we are trying to obtain. To avoid this circular situation whereby taxes affect value (lower NOI, if expensed) and value affects taxes, we remove the item from the NOI. Our tax-adjusted NOI will now be $\$ 1,880,232$ ($\$ 1,618,234+\$ 262,000)$. This is another aspect to reconstructing the income/expense statement illustrated earlier.

As a consequence of removing real estate taxes from the expenses and thereby increasing the NOI by a corresponding amount, we compensate by modifying the capitalization rate. The modification to the market cap rate allows us to remove real estate taxes from the net operating expenses and replace the loss by increasing the cap rate by the effective tax rate.

The cap rate we utilize for ad-valorem appraisals is a 'loaded' cap rate, meaning that it is comprised of both the market cap rate and the District's effective tax rate for apartments. Apartments are taxed at the residential tax rate. For this exercise the tax rate is $\$ 0.85$ per $\$ 100$ of assessed value, therefore the effective tax rate is $0.0085(0.85 / 100)$. If the market cap rate is 5.25 percent and the effective tax rate is 0.85 percent, then our 'loaded' cap rate is 6.10 percent $(0.0525+0.0085)$.

Based on the information we now have, we can estimate the market value of the subject apartment to be $\$ 30,823,500(\$ 1,880,232 / 0.061)$, the same as determined just a moment ago.

The above discussion has been presented as a review of the income approach to valuation, more specifically the direct capitalization technique. Included was an example of the valuation of an apartment building. In the next section, we'll again value the same apartment building but conduct the valuation from within
the District's CAMA system. Although the work flow may appear different, the underlying IRV formula should generate the same results.

Vision's ${ }^{\circledR}$ CAMA Income Approach to Value

In addition to the market-calibrated cost approach utilized by CAMA to value the residential property in the District, CAMA also has the capability to value commercial property using the more appropriate approach - the income capitalization approach. The discussion in this section will serve to illustrate the manner in which a commercial property, an apartment building, is valued based on the income approach.

To effectively value property, complete and accurate property characteristics must be known. Although the physical characteristics such as wall type, roof type, building style and the like are important, the most important information regarding commercial property subject to the income approach are characteristics of the property dealing with its ability to produce income. In an office building, for example, the gross building area or net leaseable area are important. In hotels and motels the significant measure is the number of rooms available. And in apartment buildings it would be the number and style of the units for rent.

We'll begin our appraisal of Breakaway Northwest by identifying the "mix" of units in the building. The table below represents this information.

The mix of units is as follows:

No. of Bedrooms	1 Bed	2 Bed	3 Bed
No. of Bathrooms	1 Bath	1 Bath	2 Bath
No. of Units	62	76	26

Table 1
From our previous discussion of the income approach, we know that there are four "key" areas having to do with the income approach to value:

- Gross Income (Rent)
- Vacancy \& Expenses
- Net Operating Income
- Capitalization Rate

The illustration below highlights the location of these key areas on the data entry screen within CAMA.

Gross Rent

Recall we will be appraising the same apartment property from the example in the first section. Let's first turn our attention to the Gross Rent. We'll be entering information for each section, using one line for each style of apartments. By style, we mean the unit of comparison designated for apartment buildings - 1 bed- 1 bath, 2 bed w/den- 1 bath, 3 bed- 2 bath, and the like.

Let's look at the first line of the table:

Bldg	Section	Style	Description $X X$	Use	Locati	Tenants	Area		Floor		Gross Rent	Vacancy	Vac \%	Vac Amt	Expense	Exp \%	Exp Amount
-1	1	1101	18R, 1BA	3	3	0	46	19440.0	0	19440.	\$894,240.00	3	0.0500	44,712		0.4800	407773
1	1	2101	2BR, 1BA	3	3	0	76	28560.0		28560.	2,170,560.00	3	0.0500	108,528	3	0.4800	989775
1	1	3201	3BR, 2BA	3	3	0	26	35280.0	0	35280.	\$917,280.00	3	0.0500	45,864	3	0.4800	418280
1	1	5000	APT MISC INCOME	3	3	0	0	0.00	0	0.00	\$62,600.00	3	0.0000		3	0.4800	30048

Illustration3

Our first line will account for the 1 bedroom-1 bath units in the complex. The style code "1101" is selected from a pick-list that describes the different styles available for apartments. Please refer to the illustration below for a partial list of Income Style for apartments.

Illustration 4

There are sixty-two 1BR, 1BA units and that number is recorded in the "SF/Unit" column of the table. In addition to recording the style and number of units, the appraiser may choose to modify the Gross Rent by taking into consideration both the tenant desirability and the location of the apartment. The two columns labeled "Use" and "Loc" account for these adjustments, respectively. The adjustments are percentage increases or decreases to the Gross Income from the default value of "average." Both the "Use" and "Loc" allow for the same percent adjustment each, as shown in the illustration below.

Illustration 5

The amount of adjustment is based on the table below:

Rating	Description	Location	Use
1	POOR	0.80	0.80
2	FAIR	0.90	0.90
3	AVERAGE	1.00	1.00
4	GOOD	1.10	1.10
5	EXCELLENT	1.25	1.25
A	AVERAGE	1.00	1.00
S	NON-MARKET	1.00	0.90

Table 2
In our example, we chose not to make any adjustments for location or desirability to any of the apartment units in this property.

The Base Rate shows the annual rent for each unit of the particular style "1101" - 1BR, 1BA. In this example the rent is $\$ 1,620$ per month or $\$ 19,440$ on an annual basis as shown in the base rate column. This value has been selected from a table in CAMA. The table has been calibrated based upon market analysis of current rents segmented by location and style, throughout the District. Below is an excerpt of a table that illustrates the rents for our particular property.

		OLD CITY \#2 Monthly Rent	
0000	JR. EFFICIENCY	1255	
0101	EFFICIENCY	1330	
0102	EFFICIENCY, SM	1255	
0103	EFFICIENCY, LG	1465	
1101	1BR, 1BA	1620	
1102	1BR, 1BA, SM	1475	
1103	1BR, 1BA, LG	1800	
1111	1BR+DEN, 1BA	1885	
1113	1BR+DEN 1BA, LG	2075	
2101	2BR, 1BA	2380	
2102	2BR, 1BA, SM	2145	
2103	2BR, 1BA, LG	2610	
2111	2BR+DEN, 1BA	2740	
2113	2BR+DEN 1BA, LG	3010	
2201	2BR, 2BA	2740	
2202	2BR, 2BA, SM	2465	
2203	2BR, 2BA, LG	3010	

2211	2BR+DEN, 2BA	3285
2213	2BR+DEN 2BA, LG	3620
3101	3BR, 1BA	2550
3102	3BR, 1BA, SM	2290
3103	3BR, 1BA, LG	2805
3111	3BR+DEN, 1BA	2940
3113	3R+DEN 1BA, LG	3220
3201	3BR, 2BA	2940
3202	3BR, 2BA, SM	2635

Table 3
Notice that our subject property is located in the Old City \#2 market. The District of Columbia is divided into nine separate markets for income modeling purposes. The market influences within Old City \#2 are, for example, different from the influences within Southwest or Georgetown markets. Separate rent rate and vacancy and expense ratio schedules exist for each separate market.

As we continue with our example, we account for the other two styles of units in a similar manner. At this point, the gross rent has been calculated to be $\$ 4,293,120$. But, if you recall from the income and expense statement, the property generated an additional $\$ 62,600$ in non-rental income. We need to include this amount to determine to total gross income.

To account for the miscellaneous income, select "5000 APT MISC INCOME" as the style and enter the actual amount directly into the Gross Rent column. We want to be sure to set the "OV?"(override), column to "Yes." By doing so, we ensure that the amount does not get adjusted for vacancy and collection loss discussed in the next section. Typically, only rental income is subjected to vacancy and collection loss. See the illustration below:

Bldg	Section	Style	DescriptionXX	Use	Locati	Tenants	Area		Floor		Gross Rent	Vacancy	Vac \%	Vac Ams	Expense	Exp \%	Exp Amount
1	1	1101	$1 \mathrm{BR}, 1 \mathrm{BA}$	3	3	0	62	19440.	0	19440.	1,205,280.00	3	0.0500	60,264	3	0.4800	549608
1	1	2101	2BR, 1BA	3	3	0	76	28560.	0	28560.	2,170,560.00	3	0.0500	108,528	3	0.4800	989775
1	1	3201	3BR, 2BA	3	3	0	26	35280.	0	35280.	\$917,280.00	3	0.0500	45,864	3	0.4800	418280
- 1	1	5000	APT MISC INCOME	3	3	0	0	0	0	0.00	\$62,600.00		0.0000		$3 \quad$	0.4800	30048

Illustration 6
This concludes our discussion of the Gross Rent tab in the CAMA system. We have accounted for all of the rent attributable to the property and concluded that the Gross Rent is the sum of $\$ 4,355,720$, the same amount as shown on the income and expense sheet from section one. Next, we'll turn to the Vacancy \& Expenses portion of the record.

Vacancy and Expenses

Our work in the Vacancy and Expenses will be similar to what we did in the Gross Income. However, in this table we'll account for four items:

- Vacancy amount
- EGI (Effective Gross Income) calculation
- Expense amount
- NOI (Net Operating Income) calculation

The value of the NOI calculated here will be the basis for the final valuation using the IRV formula, after selecting a rate. See below:

A Vacancy and Expenses line is automatically created for each style shown on the Gross Rent. The values are based on the market area of the property and are derived from market analysis. Recall that our apartments are located in the Old City \#2 market. CAMA populates the Vac\% column and the Exp\% column with the market rates appropriate for Old City \#2; in this case it would be based on this table:

			OLD CITY	
	GEORGETOWN	NORTHEAST	\#2	SOUTHEAST
Vacancy Ratio	4%	7%	5%	8%
Expense Ratio	42%	60%	48%	60%

Table 4
We have inspected the property and concur that the vacancy rate should be five percent, to coincide with typical vacancies for properties in Old City \#2.

If, however, we found the property to have less than typical vacancy we could have selected "4 Good." Whereas the typical vacancy for the Old City \#2 market area is 5 percent, had we selected "Good", the vacancy rate would have been modified by appropriate multiplier in the adjustment table. The adjusted amount would have been 2.5 percent ($0.05{ }^{*} 0.50$). The amount of adjustment for both vacancy and expense are shown in the table below.

Rating	Description	Vacancy	Expense
1	POOR	2.00	1.25
2	FAIR	1.50	1.10
3	AVERAGE	1.00	1.00
4	GOOD	0.50	0.90
5	EXCELLENT	0.25	0.75
A	AVERAGE	1.00	1.00
S	NON-MARKET	0.25	1.00

Table 5

The Expense \% may be adjusted in a similar manner, but we'll leave it set to the typical percent associated with the Old City \#2 market of forty-eight percent. By subtracting the Exp. Amount from the EGI, we get the NOI of the property. CAMA has calculated the NOI to be $\$ 2,153,353$, identical to our earlier income and expense report modified for real estate taxes discussed earlier.

Illustration 9

We're almost finished. The last piece of the valuation process is the capitalization rate.

Capitalization Rate

Capitalization rates will vary across the District based on the class of property (office, retail, apartments, etc.) and its location (market area). Capitalization rates are assigned to apartments based on their market location and type of apartment complex. The District is divided into three submarkets. Each of these submarkets provides a separate cap rate for high-rise and low-rise apartments. Neighborhood 40/E, Old City II, is located in the Northwest market area and our subject is a high-rise type complex.

The assigned capitalization rate for high-rise apartments in the Northwest market area is 0.055 or 5.5 percent. Remember, this is the 'loaded' cap rate. See the illustration below.

[^1]Upon analysis of the property and its income and expenses, an adjustment to the cap rate is not warranted and therefore the cap rate adjustment is set to "Average". Had the property been located closer to the Mt. Vernon Metro station, there may have been a reason to adjust the cap rate down to reflect the property's good performance based on its proximity to the station. In that situation, instead of 'average', we would want to adjust the rate to "Good" thereby lowering the rate. This adjustment is accomplished by the Cap Adjustment dialog box. See below.

Illustration 11

Had we agreed that the performance was "Good", our original cap rate of 5.5 percent would have been modified to 4.95 percent (0.061 * 0.90). Remember IRV tells us that, all other things being equal, the lower the cap rate the higher the property value and vise versa.

Cap Rating		Description
0	Adjustment	
1	VERY POOR	1.30
2	POOR	1.20
3	FAIR	1.10
4	AVERAGE	1.00
4	GOOD	0.90
A	EXCELLENT	0.80
	AVERAGE	1.00

Table 6

Valuation

We have almost come to the end of our example and exercise. One simple division remains. Knowing that the NOI is $\$ 2,153,353$ and that the overall direct capitalization rate is 0.055 , we can calculate the estimated value of Breakaway Northwest to be $\$ 39,151,870(\$ 2,153,353 / 0.055)$. Again, this is identical to the amount estimated in the first section of the exercise. The final results are highlighted below.

[^2]
Some Final Thoughts

We have introduced you to some of the most elementary aspects of property valuation using the District's Vision ${ }^{\circledR}$ CAMA system. We have developed the estimated market value of a fictitious apartment complex, utilizing the direct capitalization income approach to value. This guideline is merely a small window, a first step, in the complex field of mass appraisal. A CAMA system robust enough to appraise almost 200,000 different properties will necessarily be comprehensive and complex. Additionally, an initial valuation generated by CAMA is always subject to the review and approval of a qualified, professional appraiser before it becomes a final value. As you explore and utilize the program make certain that you fully understand the ramifications and results of your actions. Your supervisor and/or CAMA manager will always be available to assist you.

Guidelines for Non-Market Multifamily (Apartment) Assessment

Various affordable multi-family residential properties benefit from some public funding programs. The funding programs mostly impose restrictions that run with the land for a determined period in exchange for some restricted rent or other subsidy.

There are many categories of low-income multifamily housing with many or different complex capital financial structures, which makes its valuation a challenge. Examples of low-income (affordable) housing development includes, Section 202 housing, Section 221, Section 8 certificate and voucher program, Hope VI program, Low Income Housing Tax Credit (LIHTC) etc.

In simplifying the valuation/assessment process of low-income housing, and for OTR purposes, apartment units in low-income multifamily development under any kind of government program are referred to as "non-market" unit; denoted by "S: NON-MARKET" in Vision CAMA program under all adjustments categories except the capitalization rate.

Valuation Methodology

Income approach is generally accepted as the most reliable valuation method of appraising low-income multifamily housing developments. The sales comparison approach is less applicable due to limited or total lack of truly comparable sales, because of different income characteristics and government restrictions imposed on these properties. Also, these developments are sometimes too old, to make conclusion of market value via cost approach reliable.

The objective of this guide line is to focus on estimating market value of "nonmarket" apartments using Vision CAMA income model for consistency and consideration to existing restrictions by the government program in the housing development.

When the unit-mix consists of market and non-market units - Use to populate the unit-mix in the income model

[^3] table.

Sample Apartment Units-Mix.					S = Non-Market Units			
Bldg	Section	Style	Description $X X$	Use	Locati	Tenants	Area	
1	1	1101	$1 \mathrm{BR}, 1 \mathrm{BA}$	3	3	0	45	
1	1	2101	2BR, 1BA	3	3	0	20	
1	1	3201	3BR, 2BA	3	3	0	15	$\begin{aligned} \text { Market } & =80 \text { units } \\ \text { Non-Market } & =\underline{20} \text { units } \end{aligned}$
1	1	5000	APT MISC INCO	ME 3	3	0	0	Total $=100$
1	1	1101	$1 \mathrm{BR}, 1 \mathrm{BA}$	S	3	0	15	
1	1	2101	$2 \mathrm{BR}, 1 \mathrm{BA}$	(5)	S	0	5	
			Style	2101 : 2BR, 1BA		\checkmark		
		Ue Quality Adjustment		S: NON-MARKE		\cdots		

The income model automatically adjusts market rent when " S : NON-MARKET" is selected under Use Quality Adjustment.

Rent								Market Rent \uparrow		Adjusted	
Bldg	Section	Style	DescriptionXX	Use	Locati	Tenants	Area	\downarrow	Floor	\downarrow	Gross Rent
> 1	1	110	$1 B R, 1 B A$	S	3	0	15	19440	UL	174	\$262,440,00

When the I\&E report have the actual (received) rent for any non-market unit, check the box in front of Gross Rent and override it with the actual rent.

Actual Rent (override)										
Bldg	Section	Style	DescriptionXX	Use	Locati	Tenants	Area	Floor		Gross Rent
1	1	2101	$2 \mathrm{BR}, 1 \mathrm{BA}$	S	S	0	5	28560. UL	25000	\$125,000.00

Select or apply non-market vacancy adjustment to all non-market units

Expenses and cap rate should be consistent for all the units except otherwise determined by the appraiser based on verifiable data.

Finally, check your analysis for accuracy and value conclusion.

GROSS RENT	$\$ 2,425,240$
Vacancy	$\$ 103,603$
EXP	$\$ 1,114,386$
NOI	$\$ 1,207,252$
BLDG VALUE	$\$ 21,950,040$
Other Adjustment	0
INCOME	$\$ 21,950,040$
Per SF/Unit	$\$ 219,500,40$

APPENDIX:

Sample PRC

PLEASE ALLOW THIS EXAMPLE TO BE USED AS A GUIDE TO UNDERSTANDING YOUR APPRAISAL.

CBD, INC. Office Building

December 31, 2015

Potential Gross Income

	Office: 198,000 sq. ft. X \$52	\$10,296,000	
	Retail: 7,500 sq. ft. X \$65	487,500	
	Parking	500,000	
	Antenna Lease	30,000	
1.	Total Potential Gross Income		\$ 11,313,500
2.	less Vacancy \& Collection Loss (7\%)	- 754,845	
3.	Effective Gross Income		\$ 10,558,655
	Expenses		
	Operating:		
4	Office Area (24\%, rounded)	\$ 2,345,944	
5.	Retail Area (25%, rounded)	113,344	
6.	Parking \& Antenna (25%, rounded)	132,500	
7.	Reserves for Replacements (2% of PGI)	226,270	
8.	Total Expenses		- \$ 2,818,058
9.	Net Operating Income		\$7,740,597
10.	Class ' A ' Property Capitalization Rate	6.00 \%	
11.	Indicated Market Value		\$129,009,950

USECODE

(Selects No.	Base Rate) Description	Value
011	Row	$\$ 174.31$
012	Detached	$\$ 184.83$
013	Semi-Detached	$\$ 178.15$
015	Mixed Use	$\$ 174.31$
019	Miscellaneous	$\$ 174.31$
023	Small Apt. Bldg.	$\$ 180.39$
024	Conversion	$\$ 189.09$

CONSTRUCTION DETAIL	
No.	Description
Style	(Descriptive)
1	1 Story
2	1.5 Story Unfin
3	1.5 Story Fin
4	2 Story
5	2.5 Story Unfin
6	2.5 Story Fin
7	3 Story
8	3.5 Story Unfin
9	3.5 Story Fin
10	4 Story
11	4.5 Story Unfin
12	4.5 Story Fin
13	Bi-Level
14	Split Level
15	Split Foyer

	Foundation (Descriptive)	6	Water Base Brd	$\$ 1.42$		
0	No Data	7	Warm Cool			
4	Pier	8	Ht Pump			
5	Wood	9	Evp Cool			
6	Concrete	10	Air Exchng			
		11	Gravity Furnace			
View	(Descriptive)	12	Ind Unit			
0	Typical	13	Hot Water Rad			
1	Poor	(AC Type (Add to Base Rate)				
2	Fair	0	Default			
3	Average	N	No			
4	Good	Y	Yes	$\$ 1.80$		

Building Type (Descriptive)		
0	Default	
1	Single	
2	Multi	
6	Row End	\$2.50
7	Row Inside	
8	Semi-Detached	
Roof	(Add to Base Ra	
0	Typical	
1	Comp Shingle	
2	Built Up	
3	Shingle	\$0.68
4	Shake	\$0.79
5	Metal-Pre	\$0.50
6	Metal Sms	\$0.50
7	Metal-Cpr	\$0.50
8	Composition Roll	-\$0.43
9	Concrete Tile	\$1.88
10	Clay Tile	\$2.93
11	Slate	\$2.86
12	Concrete	\$1.88
13	Neoprene	\$0.00
15	Wood- FS	\$0.68

Exterior Finish (Add to Base Rate)		
0	Default	
1	Plywood	
2	Hardboard Lap	
3	Metal Siding	
4	Vinyl Siding	
5	Stucco	
6	Wood Siding	
7	Shingle	
8	SPlaster	
9	Rustic Log	
10	Brick Veneer	\$3.95
11	Stone Veneer	\$9.38
12	Concrete Block	
13	Stucco Block	
14	Common Brick	\$3.95
15	Face Brick	\$3.95
16	Adobe	
17	Stone	\$9.38
18	Concrete	\$3.95
19	Aluminum	
20	Brick/Stone	\$6.67
21	Brick/Stucco	\$1.98
22	Brick/Siding	\$1.98
23	Stone/Stucco	\$4.69
24	Stone/Siding	\$4.69
Heat Type (Add to Base Rate)		
0	No Data	
1	Forced Air	
2	Air-Oil	\$0.55
3	Wall Furnace	-\$1.27
4	Electric Rad	-\$0.29
5	Elec Base Brd	-\$0.20
6	Water Base Brd	\$1.42
7	Warm Cool	
8	Ht Pump	
9	Evp Cool	
10	Air Exchng	
11	Gravity Furnace	
12	Ind Unit	
13	Hot Water Rad	
AC Type (Add to Base Rate)		
0	Default	
N	No	
Y	Yes	\$1.80

Floor Covering (Add to Base Rate)

0	Default	$\$ 2.50$
1	Resilient	$\$ 2.63$
2	Carpet	$\$ 2.17$
3	Wood Floor	$\$ 6.06$
4	Ceramic Tile	$\$ 8.53$
5	Terrazzo	$\$ 8.30$
6	Hardwood	$\$ 7.17$
7	Parquet	$\$ 8.15$
8	Vinyl Comp	$\$ 1.64$
9	Vinyl Sheet	$\$ 2.86$
10	Lt Concrete	$\$ 0.75$
11	Hardwood/Carp	$\$ 4.67$

Per Unit Adjustment (Flat Rate Add)

Full Bath (over 1)	$\$ 12,000$
Half Bath	$\$ 7,200$
Fireplace	$\$ 9,000$
Kitchen	$\$ 11,500$
Finished Basement (Basic)	$\$ 26.00 / \mathrm{sf}$
Finished Basement (Partition)	$\$ 67.00 / \mathrm{sf}$
Basement Garage	$\$ 58.00 /$ sf
Carport	$\$ 42.00 / \mathrm{sf}$
Stoop	$\$ 28.00 / \mathrm{sf}$
Open Porch	$\$ 28.00 / \mathrm{sf}$
Covered Open Porch	$\$ 49.00 / \mathrm{sf}$

Screen Enclosed Porch	$\$ 52.50 / \mathrm{sf}$
Glass Enclosed Porch	$\$ 59.50 / \mathrm{sf}$
Fully Enclosed Porch	$\$ 70.00 / \mathrm{sf}$
Deck	$\$ 31.50 / \mathrm{sf}$
Patio	$\$ 10.50 / \mathrm{sf}$

Grade (Multiplies Base, Add \& Flat)		
0	Default	
1	Low Quality	0.50
2	Fair Quality	0.75
3	Average Quality	1.00
4	Above Average Quality	1.06
5	Good Quality	1.16
6	Very Good Quality	1.30
7	Excellent Quality	1.44
8	Superior Quality	1.64
9	Extraordinary - A	1.92
10	Extraordinary - B	2.19
11	Extraordinary - C	2.55
12	Extraordinary - D	2.90

Interior		
Condition (Multiplies Base, Add \& Flat)		
0	Typical	.794
1	Poor	.843
2	Fair	1.000
3	Average	1.083
4	Good	1.182
5	Very Good	1.239

Exterior Condition (Multiplies Base, Add \& Flat)		
0	Default	
1	Poor	
2	Fair	.794
3	Average	.843
4	Good	1.000
5	Very Good	1.083
6	Excellent	1.182
	1.239	

OverallCondition (Multiplies Base, Add \& Flat) 0		
Default		
1	Poor	.794
2	Fair	.843
3	Average	1.000
4	Good	1.083
5	Very Good	1.182
6	Excellent	1.239

Remodel Type (Multiplies Base, Add \& Flat)

0	Default
1	Unknown

Unknown	
Gut Rehab	1.43
Major Renov	1.28
Remodel	1.08
Addition	
Cosmetic	1.03

The effect of this multiplier diminishes at a rate of 5\% per year based on the Remodel Year.

DEPRECIATION DETAIL

No.	Description	Value
Grade	(Adjust EYB)	
0	Default	
1	Low Quality	20%
2	Fair Quality	10%
3	Average Quality	--
4	Above Average	-05%
5	Good Quality	-10%
6	Very Good Quality	-15%
7	Excellent Quality	-25%
8	Superior Quality	-35%
9	Extraordinary - A	-45%
10	Extraordinary - B	-50%
11	Extraordinary - C	-50%
12	Extraordinary - D	-50%

Bath Style (Adjust EYB)

0	Default	
1	No Remodeling	
2	Semi-Modern	-05%
3	Modern	-10%
4	Luxury	-20%

Kitchen Style (Adjust EYB)

0	Default	
1	No Remodeling	
2	Semi-Modern	-10%
3	Modern	-20%
4	Luxury	-40%

Building RCN $=\left[\left(\right.\right.$ Base Rate $\left.+\sum \mathrm{ABRV}_{\mathrm{n}}\right)$ * Effective Area * Size Adjustment $+\Sigma$ $\left.\operatorname{AFRV}_{\mathrm{n}}\right]^{*}\left(\mathrm{MV}_{0}{ }^{*} \mathrm{MV}_{2}{ }^{*} \ldots \mathrm{MV}_{\mathrm{N}}\right)$

Where:

RCN = Replacement Cost New
Base Rate = \$ rate based on use and style
ABRV = Additive Base Rate Variables
Effective Area $=$ Adjusted SF area of improvement
Size Adjustment $=$ Adjustment factor for deviation from base size
AFRV = Additive Flat Rate Variables MV = Multiplicative Variables

Depreciation Table			
$\begin{aligned} & \text { Base Year } \\ & 2021 \end{aligned}$			
$\begin{aligned} & \text { Effective } \\ & \text { Age of } \\ & \text { Building } \end{aligned}$	\% Depr.	\% Good	Effective Year Built
0	0	100	2021
1	1	99	2020
2	2	98	2019
3	2	98	2018
4	3	97	2017
5	3	97	2016
6	4	96	2015
7	4	96	2014
8	4	96	2013
9	4	96	2012
10	5	95	2011
11	5	95	2010
12	5	95	2009
13	5	95	2008
14	6	94	2007
15	6	94	2006
16	6	94	2005
17	6	94	2004
18	6	94	2003
19	7	93	2002
20	7	93	2001
21	7	93	2000
22	7	93	1999
23	7	93	1998
24	8	92	1997
25	8	92	1996
26	8	92	1995
27	8	92	1994
28	8	92	1993
29	9	91	1992
30	9	91	1991
31	9	91	1990
32	9	91	1989
33	9	91	1988
34	9	91	1987
35	10	90	1986
36	10	90	1985
37	10	90	1984
38	10	90	1983
39	10	90	1982
40	10	90	1981
41	11	89	1980
42	11	89	1979
43	11	89	1978
44	11	89	1977
45	11	89	1976

46	11	89	1975
47	12	88	1974
48	12	88	1973
49	12	88	1972
50	12	88	1971
51	12	88	1970
52	12	88	1969
53	12	88	1968
54	13	87	1967
55	13	87	1966
56	13	87	1965
57	13	87	1964
58	13	87	1963
59	13	87	1962
60	14	86	1961
61	14	86	1960
62	14	86	1959
63	14	86	1958
64	14	86	1957
65	14	86	1956
70	15	85	1951
75	16	84	1946

Base Year 2021			
		70 Year Economic Life	
Age of Building	Effective Year Built	Percent of Depreciation	$\begin{aligned} & \text { Percent } \\ & \text { Good } \end{aligned}$
0	2021	0	100
1	2020	0	100
2	2019	0	100
3	2018	0	100
4	2017	1	99
5	2016	1	99
6	2015	1	99
7	2014	1	99
8	2013	1	99
9	2012	2	98
10	2011	2	98
11	2010	2	98
12	2009	2	98
13	2008	2	98
14	2007	3	97
15	2006	3	97
16	2005	3	97
17	2004	4	96
18	2003	4	96
19	2002	4	96
20	2001	5	95
21	2000	5	95
22	1999	6	94
23	1998	6	94
24	1997	7	93
25	1996	7	93
26	1995	8	92
27	1994	9	91
28	1993	9	91
29	1992	10	90
30	1991	11	89
31	1990	12	88
32	1989	13	87
33	1988	14	86
34	1987	15	85
35	1986	16	84
36	1985	17	83
37	1984	18	82
38	1983	19	81
39	1982	20	80
40	1981	21	79
41	1980	23	77
42	1979	25	75
43	1978	26	74
44	1977	28	72
45	1976	29	71
46	1975	31	69
47	1974	32	68
48	1973	34	66
49	1972	36	64
50	1971	38	62
51	1970	40	60
52	1969	42	58
53	1968	44	56
54	1967	46	54
55	1966	48	52
56	1965	50	50
57	1964	52	48
58	1963	54	46
59	1962	56	44
60	1961	57	43
61	1960	59	41
62	1959	61	39
63	1958	63	37
64	1957	64	36
65	1956	65	35
70	1955	71	29

50 Year Economic L	
Percent of Depreciation	Percent Good
0	100
0	100
0	100
1	99
1	99
1	99
1	99
2	98
2	98
2	98
3	97
3	97
4	96
4	96
5	95
5	95
6	94
7	93
7	93
9	91
9	91
10	90
12	88
13	87
15	85
16	84
17	83
19	81
20	80
23	77
25	75
26	74
29	71
31	69
34	66
36	64
38	62
42	58
44	56
48	52
50	50
52	48
56	44
57	43
61	39
63	37
64	36
66	34
67	33
70	30
71	29

CONSTRUCTION DETAIL

Section Detail

No. Description
Value

Building Stories		
Occupancy		
	As Indicated.	
Select from list.		
Stories	and \#Units	
	As Indicated.	
Structure Class		
0	Default	
A	Fireproof Steel	
B	Reinforced Concrete	
C	Con. Block/Solid Brick	
D	Wood Frame	
P	Wood Pole	
S	Steel/Sheet Metal	
Exterior Finish		
0	Typical	
AS	Asphalt Siding	
BR	Brick (Solid)	
BV	Brick Veneer	
C	Concrete	
CB	Concrete Block	
MS	Metal Siding	
S	Stone	
SU	Stucco	
SV	Stone Veneer	
WS	Wood Siding	
Grade (Multiplies Base, Features)		
0	Default	--
0	Poor Quality	-30\%
15	Poor+ Quality	-20\%
20	Fair Quality	-10\%
25	Fair+ Quality	-05\%
30	Average Quality	--
35	Average+ Quality	06\%
40	Good Quality	12\%
45	Good+ Quality	21\%
50	Very Good Quality	30\%
55	Very Good + Quality	38\%
60	Excellent	45\%

Story Height (Multiplies Base)
Currently not in use
Wall Height (Adds to Base Rate)
Currently not in use
CDU Condition, Desirability, Utility (Multiplies Base, Features)

EX	Excellent	35%
VG	Very Good	30%
G	Good	15%
AV	Average	--
F	Fair	-25%
P	Poor	-50%
VP	Very Poor	-70%
US	Unsound	-90%

DEPRECIATION DETAIL
 No. Description Value

Structure Class (Adjust EYB)

0	Default	0
A	Fireproof Steel	-20%
B	Reinforced Conc.	-15%
C	Con. Block/Brick	-10%
D	Wood Frame	0
S	Steel/Sheet Metal	0

Remodel		
Rating (Adjusts EYB)		
0	Default	--
1	Unknown	-10%
2	Gut Rehab	-70%
3	Major Renovation	-55%
4	Remodel	-45%
5	Addition	-30%
6	Cosmetic	-10%

Year Remodeled (Adjust EYB)	
$2016-2019$	0%
$2014-2015$	5%
$2009-2013$	15%
$2004-2008$	25%
Earlier-2003	50%

Extra				Features (Flat and Sq Ft Add)
BL	Balcony	Flat		
ELEV	Elevators	Flat		
HVAC	Heat \& Cool	Sq. Ft.		
MZ	Mezzanines	Sq. Ft.		
SPRK	Sprinklers	Sq. Ft.		

```
Building RCN = [Section
Effective Area * Size Adjustment) *
    (MV * MV % * .. * MV N)] +
    [Sectionn (Base Rate *
Effective Area * Size Adjustment) *
    (MV * MV 2 * .. * MV )] +
    [\SigmaSpecial Building
Features]
```

Where:
RCN = Replacement Cost New Base Rate $=\$$ rate based on occupancy (use) code and construction class
Section $_{n}=$ Each separate building or section of building
Effective Area $=$ Adjusted SF area of improvement
Size Adjustment $=$ Adjustment factor for deviation from base size MV = Multiplicative Variables

2022 Cost Occupancy / Use Codes

Occ. Code	Land Class	Description	Bldg. Model	Bldg. Occ.	Cost Group	Cost Adjustment	Size Adj. Table	$\begin{gathered} \text { Standard } \\ \text { Size } \\ \hline \end{gathered}$	Standard Wall Height	Wall Height Adjustment	$\begin{aligned} & \text { Run } \\ & \text { Cost? } \end{aligned}$
001	C	Non-conform residential-single	94	001	RH1	1	S90	2000	8	0.015	1
002	R	Non-conform residential-multi-	94	002	AP1	1	S90	1500	8	0.02	1
003	R	Residential Transient	94	003	RH1	1	S90	8000	10	0.015	1
004	C	Commercial-Retail (NC)	94	004	RT1	1	S90	5000	12	0.01	1
005	C	Commercial-Office (NC)	94	005	OF1	1	S90	6000	10	0.015	1
006	C	Commercial-Spec Purpose (NC)	94	006	GS1	1	S90	6000	8	0.015	1
007	C	Industrial (NC)	94	007	MN2	1	S90	20000	8	0.015	1
008	C	Special Purpose (NC)	94	008	GS1	1	S90	8000	8	0.015	1
011	R	Residential Row Single Family	01	011	R11	1	SG3	1800	8	0.015	1
012	R	Residential Detached Single Fa	01	012	R12	1	SG3	1800	8	0.015	1
013	R	Residential-Semi-Detached Sing	01	013	R13	1	SG3	1800	8	0.015	1
014	R	Residential Garage	00	014		1	S90	10000	0	0.015	1
015	R	Residential-Mixed Use	01	015	R15	1	SG3	1800	8	0.02	1
016	R	Residential-Condo-Horizontal	05	016	CND	1	S90	1000	8	0.015	1
017	R	Residential-Condo-Vertical	05	017	CON	1	CDU	800	8	0.015	1
018	R	Residential-Condo-Parking	00	018		1	S90	10000	8	0.015	1
019	R	Residential-Single Family-Misc	01	019	R19	1	SG3	1800	8	0.015	1
021	C	Residential Apartment-Walk-Up	94	021	AP1	1	S90	10000	8	0.02	1
022	C	Residential-Apartment-Elevator	94	022	AP2	1	S90	50000	8	0.015	1
023	R	Res Flats-Less than 5 Units	03	023	R23	1	SG4	3000	8	0.015	1
024	R	Res-Coversions less than 5 Uni	02	024	R24	1	SG3	1800	8	0.015	1
025	C	Res-Coversions 5 Units	94	025	MRC	1	S90	10000	8	0.02	1
026	C	Res-Cooperative-Horizo	94	026	AP2	1	S90	10000	8	0.015	1
027	C	Res-Cooperative-Verical	94	027	AP2	1	S90	50000	8	0.015	1
028	C	Res-Conversions-mr than 5	94	028	MRC	1	S90	20000	8	0.015	1
029	C	Res-Multi-family Misc	94	029	AP2	1	S90	50000	8	0.015	1
031	C	Hotel-Small	94	031	HT1	1	S90	20000	9	0.01	1
032	C	Hotel-Large	94	032	HT2	1	S90	135000	9	0.01	1
033	C	Motel	94	033	HT1	0.8	S90	20000	9	0.01	1
034	C	Private Club	94	034	GS1	1	S90	4000	14	0.015	1
035	C	Tourist Homes	94	035	RH1	1	S90	8000	10	0.015	1
036	C	Dormitory	94	036	RH2	1	S90	8000	8	0.015	
037	C	Inn	94	037	MRC	1	S90	12000	10	0.01	1
038	C	Fraternity/Sorority House	94	038	RH2	1	S90	8000	10	0.015	1
039	C	Res-Transient Misc	94	039	RH1	1	S90	5000	8	0.015	1
041	C	Store-Small 1 Story	94	041	RT1	1	S90	10000	14	0.01	1
042	C	Store-Misc	94	042	RT1	1	S90	4000	14	0.01	1
043	C	Store-Department	94	043	RT3	1	S90	40000	14	0.01	
044	C	Store-Shopping Center/Mall	94	044	RT2	1	S90	60000	18	0.01	1
045	C	Store-Restaurant	94	045	RS1	1	S90	5000	12	0.01	1
046	C	Store-Barber/Beauty Shop	94	046	RT4	1	S90	4000	14	0.01	1
047	C	Store-Super Market	94	047	RT2	0.88	S90	22000	14	0.01	1
048	C	Commer-Retail-Condo	94	048	RT1	1	S90	3000	14	0.01	1
049	C	Commer-Retail-Misc	94	049	RT1	1	S90	4000	14	0.01	1
051	C	Commercial-Office-Small	94	051	OF1	1	S90	6000	10	0.015	1
052	C	Commercial-Office-Large	94	052	OF3	1	S90	60000	10	0.015	1
053	C	Commercial-Planned-Development	94	053	OF3	1	S90	300000	10	0.015	1
056	C	Office-Condo-Horizontal	94	056	OF1	1	S90	3000	10	0.015	1
057	C	Office-Condo-Vertical	94	057	OF1	1	S90	3000	10	0.015	1
058	C	Commercial-Office-Condo	94	058	OF3	1	S90	6000	10	0.015	1
059	C	Commercial-Office-Misc	94	059	OF2	1	S90	6000	10	0.015	1
061	C	Commercial-Banks_Financial Svc	94	061	BN1	1	S90	3000	14	0.015	1
062	C	Commercial-Garage_ Vehicle Sal	94	062	PK1	1	S90	5000	8	0.015	1
063	C	Commercial-Parking Garage	94	063	PK2	1	S90	55000	8	0.015	1
064	C	Parking Lot Special Purpose	00	064		1	S90	25000	0	0	1
065	C	Vehicle Svc Station_ Vintage	94	065	SV1	1	S90	5000	12	0.01	1
066	C	Theaters_ Entertainment	94	066	GS2	1	S90	20000	22	0.01	1
067	C	Commercial-Restaurant	94	067	RS1	1	S90	5000	12	0.01	1
068	C	Commercial-Restaurant-Fast Foo	94	068	RS2	1.1	S90	3000	12	0.01	1
069	C	Commercial-Specific Purpose	94	069	RT1		S90	10000	14	0.01	1

2022 Cost Occupancy / Use Codes

$\begin{array}{\|l\|} \hline \text { Occ. } \\ \text { Code } \end{array}$	Land Class	Description	Bldg. Model	Bldg. Occ.	$\begin{gathered} \text { Cost } \\ \text { Group } \end{gathered}$	Cost Adjustment	Size Adj. Table	$\begin{array}{c\|} \hline \text { Standard } \\ \text { Size } \end{array}$	Standard Wall Height	Wall Height Adjustment	$\begin{array}{\|c} \text { Run } \\ \text { Cost? } \end{array}$
071	C	Industrial-Raw Material	94	071	MN1	1	S90	15000	14	0.015	1
072	C	Industrial-Heavy Manufacturing	94	072	MN2	1	S90	30000	12	0.015	1
073	C	Industrial-Light	94	073	MN1	1	S90	22000	12	0.015	1
074	C	Industrial-Warehouse-1-story	94	074	WH2	1	S90	25000	16	0.01	1
075	C	Industrial-Warehouse-Multistor	94	075	WH1	1	S90	20000	16	0.01	1
076	C	Industrial-Truck Teminal	94	076	WH3	1	S90	20000	16	0.01	1
078	C	Warehouse-Condo	94	078	WH2	1	S90	5000	16	0.01	1
079	C	Industrial -Misc	94	079	MN1	1	S90	22000	12	0.015	1
081	C	Religious	94	081	PS1	1	S90	15000	24	0.01	1
082	C	Medical	94	082	MC1	1	S90	15000	10	0.01	1
083	C	Educational	94	083	ED1	1	S90	80000	12	0.01	1
084	C	Public Service	94	084	PS1	1	S90	12000	12	0.01	1
085	C	Embassy_Chancery	94	085	PS2	1	S90	12000	12	0.01	1
086	C	Museum_Library_ Gallery	94	086	GS3	1	S90	14000	14	0.01	1
087	C	Recreational	94	087	RB1	1	S90	20000	24	0.01	1
088	C	Healthcare Facility	94	088	MC2	1	S90	8000	12	0.01	1
089	C	Special Purpose	94	089	GS2	1	S90	2000	8	0.01	1
091	R	Vacant	00	091		1	S90		0	0.015	1
092	R	Vacant-with permit	00	092		1	S90		0		1
093	R	Vacant-zoning limits	00	093		1			0		1
094	R	Vacant-false abutting	00	094		1			0		1
095	R	Vacant-Commercial Use	00	095		1			0		1
096	R	Vacant-Unimproved Parking	00	096		1			0		1
116	R	Condo-Horizontal Combined	05	116	CND	1	S90	3000	8	0.015	1
117	R	Condo-Vertictal Combined	05	117	CND	1	S90	2000	8	0.015	1
126	C	Coop-Horizontal-Mixed Use	94	126	AP2	1	S90	10000	8	0.01	1
127	C	Coop-Vertical-Mixed Use	94	127	AP2	1	S90	10000	8	0.01	1
165	C	Vehicle Svc Station_Kiosk	94	165	SS1	,	S90	5000	14	0.01	1
189	C	Special Purpose-Memorial	00	189		1	S90	10000	0	0.01	1
191	C	Vacant	00	191		1					1
192	C	Vacant-with permit	00	192		1					1
193	C	Vacant-zoning limits	00	193		1					1
194	C	Vacant-false abutting	00	194		1					1
195	C	Vacant-Commercial Use	00	195		1					1
196	C	Vacant-Unimproved Parking	00	196		1					1
214	C	Garage-Multi-family	00	214		1	S90	10000	0	0.015	1
216	C	Condo-Investment-Horizontal	94	216	CND	1	S90	10000	8	0.015	1
217	C	Condo-Investment-Vertical	94	217	CND		S90	50000	8	0.015	1
265	C	Vehicle Svc Station_Kiosk	94	265	SS1	1	S90	5000	12	0.01	1
316	R	Condo-Duplex	05	316	CND	1	S90	5000	8	0.015	1
365	C	Vehicle Svc Station_ Market	94	365	SS2	1	S90	5000	12	0.01	1
417	R	Condo-Vertical-Parking-Unid	00	417		1		2000	0		1
465	C	Vehicle Svc Station_ Market	94	465	SS2	1	S90	5000	14	0.01	1
516	R	Condo-Detached	05	516	SIN	1	S90	2000	8	0.015	1

Government of the District of Columbia Office of Tax and Revenue - Real Property Tax Administration

1101 4th Street, SW, Suite W550, Washington, DC 20024

Code Description

001 Residential-Single Family (NC)
002 Residential-Multi-Family (NC)
003 Residential-Transient (NC)
004 Commercial-Retail (NC)
005 Commercial-Office (NC)
006 Commercial-Specific Purpose (NC)
007 Industrial (NC)
008 Special Purpose (NC)
011 Residential-Row-Single-Family
012 Residential-Detached-Single-Fa
013 Residential-Semi-Detached-Sing
014 Residential-Garage
015 Residential-Mixed Use

016 Residential-Condo-Horizonta

017 Residential-Condo-Vertica

018 Residential-Condo-Garage
019 Residential-Single-Family-Misc
021 Residential-Apartment-Walk-Up

022 Residential-Apartment-Elevator

023 Residential Flats-Less than 5

024 Residential-Conversions-Less t

025 Residential-Conversion-5 Units

026 Residential-Cooperative-Horizontal

027 Residential-Cooperative-Vertical

029 Residential-Multifamily, Misc
031 Hotel-Small

Long Description

(CLASS 1): Single-family residential property which normally would receive a use code, 11-19, 23-24 but has non-conforming use. (Assigned to Commercial) (CLASS 1): Multi-family residential property which normally would receive a use code, 21-22 or 25-29, but has a non-conforming use. (Assigned to Residential)
(CLASS 1): Transient residential property which normally would receive a use code, 31-39, but has a non-conforming use. (Assigned to Residential)
(CLASS 2): Retail commercial property which normally would receive a use code, 41-49, but has non-conforming use. (Assigned to Residential)
(CLASS 2): Commercial office property which normally would receive a use code, 51-53,57-59, but has non-conforming use. (Assigned to Residential)
(CLASS 2): Commercial property which normally would receive a specific purpose use code, 61-69, but has non-conforming use. (Assigned to Residential)
(CLASS 2): Industrial property which normally would receive a use code, 71-79, but has non-conforming use. (Assigned to Residential)
(CLASS 2): Special purpose property which normally would receive a use code, 81-89, but has non-conforming use. (Assigned to Residential)
(CLASS 1): Single-family dwelling with 2 walls built as common walls with another structure, 2 exposed walls; primarily used as place of abode.
(CLASS 1): Free-standing dwelling with open space around it and in all exterior walls; primarily used as abode.
(CLASS 1): Structure with 1 dwelling place, 1 wall built as common wall with another structure, 3 exposed walls; primarily used as abode.
(CLASS 1): Structure used primarily as accessory to single-family residence; no living quarters; on an individual lot. Garages, pools, tennis courts, pads, etc.
(CLASS 1 or 2): Single-family property with commercial (usually office) space in part of house. If use is mostly single-family, lot may be eligible for a Homestead Deduction. Mixed-use eligible.
(CLASS 1): Enclosed space of 1 or more rooms, occupying all or part of 1 or more floors; entrance no higher than 3 floors; single-family use; may/may not have parking, laundry, patio, etc.
(CLASS 1): Enclosed space of 1 or more rooms, occupying all/part of 1 or more floors; in structure with elevator; more than 3 floors. Original primary use single-family. May have parking, laundry, patio, etc
(CLASS 1) : Specific space, enclosed or not, for vehicle parking or storage; use is accessory to single-family residential; no living quarters; individually located to be freely exchanged independently of another unit.
(CLASS 1) : All other residential-single family uses not otherwise coded
(CLASS 1): Structure of 6 or more units; 1 owner; owner's motivation is to earn net investment income; no units higher than 3rd floor; no elevator; may have accessory uses.
(CLASS 1): Structure with 12 or more units; 1 owner; elevator, more than 3 floors; may have accessory uses (parking, laundry, etc.). Owner's motivation is investment income.
(CLASS 1): Structure with more than 1 single family unit, less than 5; usually self-contained, under 1 roof; few accessory uses; in some cases, owner occupies 1 unit; built for this use.
(CLASS 1): Structure with more than 1 single-family unit, but less than 5 ; usually self-contained, under 1 roof; few accessory uses; 1 unit may be owner-occupied; original primary use not multi-family.
(CLASS 1): Structure with 5 units, usually not self-contained but under 1 roof; with few accessory uses; 1 unit may be owner-occupied; original primary use not multi-family
(Class 1) : Structure with more than 1 unit, of 1 or more rooms; 1 corporate ownership accounts for benefit of all tenant-shareholders, or lease from shareholders; entrance no higher than 3 floors; may have accessory uses.
(Class 1): Structure with more than 1 unit, each with 1 or more rooms; 1 corporate ownership accounts for benefit of all tenant-shareholders; lease from shareholders; elevator; more than 3 floors; may have accessory uses
(CLASS 1 or 2): All other residential multi-family uses not otherwise noted. Mixed-use eligible.
(CLASS 2): Structure providing a temporary or semi-permanent residence; sleep accommodations, personal services, usually eating/drinking facilities; may include entertainment; 150 rooms or less.

Government of the District of Columbia Office of Tax and Revenue - Real Property Tax Administration 1101 4th Street, SW, Suite W550, Washington, DC 20024

Code Description

032 Hotel-Large

033 Motel

034 Club-Private

035 Tourist Homes
036 Dormitory
037 Inn

038 Fraternity/Sorority House
039 Residential-Transient, Misc
041 Store-Small 1-Story
042 Store-Misc

043 Store-Department
044 Store-Shopping Center/Mall

045 Store-Restaurant

046 Store-Barber/Beauty Shop
047 Store-Super Market
048 Commercial-Retail-Condo
049 Commercial-Retail-Misc
051 Commercial-Office-Small
052 Commercial-Office-Large
053 Commercial-Planned Development

056 Office-Condo-Horizontal

057 Office-Condo-Vertical
058 Commercial-Office-Condo
059 Commercial-Office-Misc.
061 Commercial-Banks, Financial
062 Commercial-Garage, Vehicle Sale
063 Commercial-Parking Garage
064 Parking Lot-Special Purpose

Standards and Services, Rev. 10/2011

Use Codes

Long Description

(CLASS 2): Structure providing temporary or semi-permanent residences; full personal services; eating/drinking facilities, entertainment, retail, banquet /conference capabilities; more than 150 rooms.
(CLASS 2): Structure used primarily as temporary residence; may include personal services, restaurant facilities, adequate parking; sleep accommodations may be open to building's exterior.
(CLASS 2): Structure used primarily as meeting place for members of an association organized for promotion of a common social/other objective; limited to members/guests. May include meals, residential suites. Mixed-use eligible.
(CLASS 2): Structure or part-structure used primarily for temporary sleep accommodations; no other services; may provide limited parking.
(CLASS 2): Structure or part-structure used as resident hall with sleep accommodations; may provide other services, such as food/beverage facilities.
(CLASS 2): Structure used primarily as a temporary residence. Rooms/suites may include kitchens; no guest central dining other than continental breakfast. No commercial adjuncts, function rooms.
(CLASS 1): Resident hall with sleep accommodations; may provide other services, such as food/beverage facilities. Mixed-use eligible.
(CLASS 2): All other residential transient not otherwise coded.
(CLASS 2): Structure used primarily for retail sales; row, attached, or detached; with/without accessory uses; with/without living quarters.
(CLASS 2): Structure used primarily for ground-level retail sales; row, attached, or detached; with/without other uses; with/without living quarters. Mixed-use eligible.
(CLASS 2): Structure used primarily for sales of combination of retail products; no living quarters; except custodial staff. Mixed-use eligible.
(CLASS 2): Structure/combination of structures, enclosed/not; with combination of retail businesses located to present a unified cluster of similar uses with common elements: parking, entrances, pedestrian areas.
(CLASS 2): Structure used primarily for retail sales of food/drink prepared for carry-out or on-site consumption; in row; with/without other uses. Mixed-use eligible.
(CLASS 2): Structure used primarily for retail sales/individual grooming services; on ground level; row, attached, or detached; other uses may occupy parts. Mixed-use eligible.
(CLASS 2): Structure used primarily for retail grocery sales; ground level; row, attached, or detached; with/without accessory uses. Mixed-use eligible.
(CLASS 2): Unit in a predominately residential condo complex used for retail sales/service business.
(CLASS 2): All other retail commercial land uses not otherwise coded. Mixed-use eligible.
(CLASS 2: Structure without elevators used primarily for offices; secondary use may be retail sales, services, parking.
(CLASS 2): Structure with elevator; used predominantly for offices, secondarily for retail sales, services, parking.
(CLASS 2): Structure/combination of structures designed to incorporate several coordinated commercial endeavors into 1 closely-grouped unit; may include mall, offices, theaters, hotels, etc. Mixed-use eligible.
(CLASS 2): Structure with more than 1 unit; entrance no higher than 3 floors above ground level; designed primarily for office use; may have accessory uses such as parking, etc.
(CLASS 2): Structure with more than 1 unit, elevator, and more than 3 floors; designed primarily for office use; accessory uses such as parking, etc.
(CLASS 2): Unit in a predominantly residential condo complex used as a commercial office. Mixed-use eligible.
(CLASS 2): All other commercial office uses which have not been otherwise coded. Mixed-use eligible.
(CLASS 2): Structure with service facility devoted to transactions dealing with money as a commodity.
(CLASS 2): Structure with facility for motor vehicle repairs; devoted to retail/ wholesale motor vehicle sales.
(CLASS 2): Structure used primarily for public storage of motor vehicles; repair, greasing, washing, or similar services incidental uses
(CLASS 2): Lot used primarily for public storage of motor vehicles; any repair is incidental use; may have attendance booth, storage lifts, residential parking space if on separate lot/paved.

Government of the District of Columbia Office of Tax and Revenue - Real Property Tax Administration 1101 4th Street, SW, Suite W550, Washington, DC 20024

Code Description

065 Vehicle Service Station-Vintage

066 Theaters, Entertainment
067 Commercial-Restaurant
068 Commercial-Restaurant-Fast Food
069 Commercial-Specific Purpose, Misc
071 Industrial-Raw Material Handling
072 Industrial-Heavy Manufacturing

073 Industrial-Light

074 Industrial-Warehouse-1-Story

075 Industrial-Warehouse-Multi-Story

076 Industrial-Truck Termina

078 Warehouse-Condo

079 Industrial-Misc
081 Religious
082 Medical

083 Educational
084 Public Service
085 Embassy, Chancery, etc.
086 Museum, Library, Gallery

087 Recreational

088 Health Care Facility

089 Special Purpose-Misc
091 Vacant-True
092 Vacant-with Permit
093 Vacant-Zoning Limits
094 Vacant-False-Abutting
095 Vacant-Residential Use

Use Codes

Long Description

(CLASS 2): Structure used for retail sale of motor fuel, lubricants. Incidental services such as lubricaton, hand-car washing; sale, installation, minor repair of tires, batteries, other auto accessories
(CLASS 2): Structure with primary use for live, on-screen, or audience-participation entertainment.
(CLASS 2): Structure used primarily as public eating place for retail sale of food/drink prepared/consumed on-site; secondary accessory uses.
(CLASS 2): Structure used for retail sale of food/drink (non-alcoholic), cooked/heated in-structure for carry-out or on-site, usually specializing in a particular food.
(CLASS 2): All other specific purpose commercial uses not otherwise coded. Mixed-use eligible.
(CLASS 2) : Property used primarily to receive, store, handle, ship industrial bulk raw material, normally processed/used at another location.
(CLASS 2): Structure containing processing/manufacturing equipment which handles raw material; may change the material into a finished product for public use or for assembly operation; use limited to structure.
(CLASS 2): Structure used to process, assemble, or manufacture raw, semi-finished, or finished materials, and/or completed components; use not limited to structure.
(CLASS 2): Structure used primarily to store materials/finished products; unlimited story height; accessory uses: office and/or retail-wholesale display area, parking.
(CLASS 2): Structure used primarily to store materials/finished products; 2 or more floors devoted to structure's primary use; accessory office and retailwholesale display area.
(CLASS 2): Structure used primarily to store (short-term) and transfer (turn-around) materials/finished products shipped by truck; raised truck level bays for receiving/shipping; accessory office.
(CLASS 2): Structure used primarily to store materials/finished products; unlimited story height, 2 or more floors; accessory office and/or retail/wholesale display area.
(CLASS 2): All other industrial uses not otherwise coded. Mixed-use eligible.
(CLASS 2): Structure devoted to public worship; housing for and/or education of clergy/officials connected to religious activity; religious communities.
(CLASS 2): Structure devoted to public/private medical or surgical care to the sick or injured; outpatient diagnosis/treatment; education of medical personnel/officials.
(CLASS 2): Structure devoted to any level of public/private instruction. May include administrative, accessory functions; parking, retail sales, secondary use.
(CLASS 2): Structure used primarily to serve public to protect people or property; utility service; other public service. Accessory uses are secondary
(CLASS 2): Structure used primarily as offices of an ambassador or foreign government. Accessory uses secondary.
(CLASS 2): Structure for exhibition, display, storage of art works, other displayable chattels; usually open for public enjoyment;accessory uses (parking, retail sales).
(CLASS 2): Facility primarily used for public viewing of sporting events, training/participation in recreational activities, or any other special sporting or leisure activity.
(CLASS 2): Structure devoted to public/private medical care/treatment of the sick or injured; may include other medically connected activities, other uses (retail sales, parking).
(CLASS 2): All other special purpose uses not otherwise coded. Mixed-use eligible
(Class 1): Lot not improved with a structure and Residential vacant land (formerly Class 3).
(CLASS 1): Lot for which an unexpired building permit has been issued
(CLASS 1): Lot on which DC Zoning regulations prohibit an owner to build as a matter of right or lot with deed or covenant restrictions precluding buildings.
(CLASS 1): Lot assigned no real estate improvement value, but having part of a structure whose value is assigned to another lot. Mixed-use eligible.
(CLASS 1): Lot with relatively permanent structures (storage tanks, railroad tracks), but not buildings, used for residential purposes, making the lot unbuildable

Standards and Services, Rev. 10/2011

Government of the District of Columbia Office of Tax and Revenue - Real Property Tax Administration 1101 4th Street, SW, Suite W550, Washington, DC 20024

Code Description

096 Vacant-Unimproved Parking
097 Vacant-Improved and Abandoned
116 Condo-Horizontal-Combined-

117 Condo-Vertical-Combined

126 Coop-Horizontal-Mixed Use

127 Coop-Vertical-Mixed Use

165 Vehicle Service Station-Kiosk
189 Special Purpose-Memorial
191 Vacant-True
192 Vacant-With Permit
193 Vacant-Zoning limits
194 Vacant-False-Abutting
195 Vacant-Commercial Use
196 Vacant-Unimproved Parking
197 Vacant-Improved and Abandoned
214 Garage-Multi-Family
216 Condo-Investment-Horizonta

217 Condo-Investment-Vertical
265 Vehicle Service Station-Kiosk
316 Condo-Duplex
365 Vehicle Service Station-Market
416 Condo-Horizontal-Parking-Unid
417 Condo-Vertical-Parking-Unid
465 Vehicle Service Station-Market
516 Condo-Detached

995 Condo Main (class 1):

Use Codes

Long Description

(CLASS 1): Unimproved, graveled parking lot with approved parking permit.
(CLASS 3): Residential and commercial improved vacant and abandoned properties (formerly Class 3). No longer in use.
(CLASS 1): Unit in a structure with entrance no higher than 3 floors; designed primarily for single family residential use; accessory uses. Abuts primary unit; owner entitled to lower (Class 1) tax rate, but not Homestead Deduction
(CLASS 1): Unit in structure with entrance no higher than 3 floors, designed primarily for single family residential use; accessory uses. Abuts primary unit; owner entitled to lower (Class 1) tax rate, but not Homestead Deduction.
(Class 1 or 2): Structure with more than 1 unit, an elevator, more than 3 floors; under 1 corporate ownership which acts to benefit all shareholders-tenants. Additional uses: retail sales, restaurants, offices. Mixed-use eligible.
(Class 1 or 2): Structure with more than 1 unit, elevator, more than 3 floors; under 1 corporate ownership which acts to benefit all shareholders-tenants. Additional uses: retail sales, restaurants, offices. Mixed-use eligible.
(CLASS 2): Small cashier booth used for to sell motor oil, lubricants, small miscellaneous items (candy, gum, cigarettes).
(CLASS 2): Permanent structure other than a building devoted to or available for public use: statues, fountains, pools, etc.
(CLASS 2): Lot not improved with a structure and commercial vacant land (formerly Class 3).
(CLASS 2): Lot for which an unexpired building permit has been issued.
(CLASS 2): Lot on which DC Zoning regulations prohibit an owner to build as a matter of right or lot with deed or covenant restrictions precluding buildings.
(CLASS 2): Lot assigned no real estate improvement value, but having part of a structure whose value is assigned to another lot. Mixed-use eligible.
(CLASS 2): Lot with relatively permanent structures (storage tanks, railroad tracks), but not buildings, used for commercial purpose, making the lot unbuildable.
(CLASS 2): Unimproved, graveled parking lot with approved parking permit.
(CLASS 3): Residential and commercial improved vacant and abandoned properties (formerly Class 3). No longer in use.
(CLASS 1): Structure used primarily as accessory to multi-family residence; no living quarters; on individual lot.
(CLASS 1): Unit with entrance no higher than 3 floors above ground level, designed for single-family primary use; accessory uses. Fee owner's presumptive motivation is net investment income.
(CLASS 1): Unit with entrance no higher than 3 floors above ground level; designed for single-family primary use; accessory uses. Fee owner's presumptive motivation is net investment income.
(CLASS 2): Small cashier booth used for retail of motor oil, small miscellaneous items (candy, gum); and provides non-incidental services like car washing
(CLASS 1): Enclosed space with 2 piggy-backed units; designed primarily for single-family use; accessory uses: parking, laundry, storage, balcony, etc.
(CLASS 2): Structure used for retail of motor oil, lubricants, incidental items (edibles, household products).
(CLASS 1): Condo in regime where ownership of an associated parking space, following condo's sale, is unclear. (Assessor must determine space's status.)
(CLASS 1): Condo in regime where ownership of an associated parking space, following condo's sale, is unclear. (Assessor must determine space's status.)
(CLASS 2): Structure used to sell motor oil, lubricants, incidental items (edibles, household products); and to provide non-incidental services such as car washing.
(CLASS 1): Enclosed space of one unit of 1 or more rooms in a structure designed primarily for single-family residential use; accessory uses (parking, laundry, storage space, balcony, etc.)

2022 Base Cost Rates

Cost Group	Class	Base Rate	Depr. Table	Econ. Life	Max. Depr.	Max. Age
AP1	0	\$132.31	5	60	80	99
AP1	A	\$136.13	5	70	80	99
AP1	B	\$141.35	5	70	80	99
AP1	C	\$132.31	5	60	80	99
AP1	D	\$128.80	5	50	80	99
AP1	S	\$125.16	5	50	80	99
AP2	0	\$158.29	5	60	80	99
AP2	A	\$213.30	5	70	80	99
AP2	B	\$208.25	5	70	80	99
AP2	C	\$158.29	5	60	80	99
AP2	D	\$149.49	5	50	80	99
BN1	0	\$419.89	5	60	80	99
BN1	A	\$509.41	5	70	80	99
BN1	B	\$486.54	5	70	80	99
BN1	C	\$419.89	5	60	80	99
BN1	D	\$386.74	5	50	80	99
BN1	S	\$360.21	5	50	80	99
BS1	0	\$197.31	5	60	80	99
BS1	A	\$257.22	5	70	80	99
BS1	B	\$229.03	5	70	80	99
BS1	C	\$197.31	5	60	80	99
BS1	D	\$179.70	5	50	80	99
BS1	S	\$70.47	5	50	80	99
CD	R	\$132.13	5	99	80	99
CND	0	\$309.42	5	50	80	99
CND	A	\$309.42	5	50	80	99
CND	B	\$309.42	5	50	80	99
CND	C	\$309.42	5	50	80	99
CND	D	\$309.42	5	50	80	99
CND	R	\$309.42	5	50	80	99
CND	S	\$309.42	5	50	80	99
CW1	0	\$162.08	5	60	80	99
CW1	A	\$192.04	5	70	80	99
CW1	B	\$183.22	5	70	80	99
CW1	C	\$162.08	5	60	80	99
CW1	D	\$144.47	5	50	80	99
CW1	S	\$144.47	5	50	80	99
ED1	0	\$211.48	5	60	80	99
ED1	A	\$286.51	5	70	80	99
ED1	B	\$282.91	5	70	80	99
ED1	C	\$211.48	5	60	80	99
ED1	D	\$201.02	5	50	80	99
ED1	S	\$202.57	5	50	80	99
GEN	0	\$169.13	5	60	80	99
GEN	A	\$234.47	5	70	80	99
GEN	B	\$215.25	5	70	80	99
GEN	C	\$169.13	5	60	80	99
GEN	D	\$144.14	5	50	80	99
GEN	S	\$144.14	5	50	80	99
GS1	0	\$294.54	5	60	80	99
GS1	A	\$305.71	5	70	80	99
GS1	B	\$308.61	5	70	80	99
GS1	C	\$294.54	5	60	80	99
GS1	D	\$280.50	5	50	80	99
GS1	S	\$196.25	5	50	80	99
GS2	0	\$264.91	5	60	80	99

2022 Base Cost Rates

Cost Group	Class	Base Rate	Depr. Table	Econ. Life	Max. Depr.	Max. Age
GS2	A	\$420.68	5	70	80	99
GS2	B	\$397.20	5	70	80	99
GS2	C	\$264.91	5	60	80	99
GS2	D	\$247.60	5	50	80	99
GS2	S	\$241.16	5	50	80	99
GS3	0	\$241.74	5	60	80	99
GS3	A	\$343.40	5	70	80	99
GS3	B	\$334.77	5	70	80	99
GS3	C	\$241.74	5	60	80	99
GS3	D	\$227.50	5	50	80	99
GS3	S	\$219.26	5	50	80	99
HT1	0	\$164.43	5	60	80	99
HT1	A	\$195.63	5	70	80	99
HT1	B	\$193.85	5	70	80	99
HT1	C	\$164.43	5	60	80	99
HT1	D	\$155.57	5	50	80	99
HT1	S	\$123.56	5	50	80	99
HT2	0	\$264.57	5	60	80	99
HT2	A	\$266.31	5	70	80	99
HT2	B	\$264.57	5	70	80	99
HT2	C	\$204.92	5	60	80	99
HT2	D	\$194.46	5	50	80	99
HT2	S	\$257.31	5	50	80	99
MC1	0	\$371.81	5	60	80	99
MC1	A	\$488.12	5	70	80	99
MC1	B	\$482.17	5	70	80	99
MC1	C	\$371.81	5	60	80	99
MC1	D	\$345.46	5	50	80	99
MC1	S	\$195.73	5	50	80	99
MC2	0	\$241.74	5	60	80	99
MC2	A	\$306.61	5	70	80	99
MC2	B	\$299.79	5	70	80	99
MC2	C	\$241.74	5	60	80	99
MC2	D	\$225.09	5	50	80	99
MC2	S	\$241.74	5	50	80	99
MLT	R	\$96.34	5	70	80	70
MN1	0	\$90.88	5	60	80	99
MN1	A	\$103.42	5	70	80	99
MN1	B	\$101.87	5	70	80	99
MN1	C	\$90.88	5	60	80	99
MN1	D	\$82.85	5	50	80	99
MN1	S	\$83.25	5	50	80	99
MN2	0	\$197.41	5	60	80	99
MN2	A	\$257.36	5	70	80	99
MN2	B	\$258.50	5	70	80	99
MN2	C	\$197.41	5	60	80	99
MN2	D	\$129.93	5	50	80	99
MN2	S	\$187.17	5	50	80	99
MN4	0	\$186.75	5	60	80	99
MN4	A	\$237.84	5	70	80	99
MN4	B	\$204.36	5	70	80	99
MN4	C	\$186.75	5	60	80	99
MN4	D	\$172.65	5	50	80	99
MN4	S	\$172.65	5	50	80	99
MRC	0	\$189.09	5	75	40	75
MRC	A	\$189.09	5	75	40	75

2022 Base Cost Rates

Cost Group	Class	Base Rate	Depr. Table	Econ. Life	Max. Depr.	Max. Age
MRC	B	\$189.09	5	75	40	75
MRC	C	\$189.09	5	75	40	75
MRC	D	\$189.09	5	75	40	75
MRC	S	\$189.09	5	75	40	75
OF1	0	\$285.17	5	60	80	99
OF1	A	\$392.77	5	70	80	99
OF1	B	\$376.75	5	70	80	99
OF1	C	\$285.17	5	60	80	99
OF1	D	\$264.17	5	50	80	99
OF1	S	\$254.13	5	50	80	99
OF2	0	\$285.17	5	60	80	99
OF2	A	\$392.77	5	70	80	99
OF2	B	\$376.75	5	70	80	99
OF2	C	\$285.17	5	60	80	99
OF2	D	\$263.49	5	50	80	99
OF2	S	\$254.13	5	50	80	99
OF3	0	\$272.31	5	60	80	99
OF3	A	\$279.62	5	70	80	99
OF3	B	\$272.31	5	70	80	99
OF3	C	\$204.92	5	60	80	99
OF3	D	\$190.19	5	50	80	99
OF3	S	\$184.58	5	50	80	99
OFF	0	\$128.93	5	60	80	99
OFF	A	\$169.46	5	70	80	99
OFF	B	\$158.39	5	70	80	99
OFF	C	\$128.93	5	60	80	99
OFF	D	\$117.88	5	50	80	99
OFF	S	\$117.88	5	50	80	99
PK1	0	\$165.55	5	60	80	99
PK1	A	\$166.93	5	70	80	99
PK1	B	\$171.81	5	70	80	99
PK1	C	\$165.55	5	60	80	99
PK1	D	\$151.68	5	50	80	99
PK1	S	\$119.32	5	50	80	99
PK2	0	\$91.68	5	60	80	99
PK2	A	\$92.60	5	70	80	99
PK2	B	\$91.68	5	70	80	99
PK2	C	\$85.77	5	60	80	99
PK2	D	\$79.79	5	50	80	99
PK2	S	\$49.83	5	50	80	90
PS1	0	\$246.52	5	60	80	99
PS1	A	\$334.81	5	70	80	99
PS1	B	\$324.14	5	70	80	99
PS1	C	\$246.52	5	60	80	99
PS1	D	\$230.93	5	50	80	99
PS1	S	\$211.48	5	50	80	99
PS2	0	\$252.78	5	60	80	99
PS2	A	\$328.68	5	70	80	99
PS2	B	\$321.03	5	70	80	99
PS2	C	\$252.78	5	60	80	99
PS2	D	\$237.13	5	50	80	99
PS2	S	\$167.23	5	50	80	99
R11	R	\$174.31	6	75	80	75
R12	R	\$184.83	6	75	80	75
R13	R	\$178.15	6	75	80	75
R15	R	\$174.31	6	75	80	75

2022 Base Cost Rates

Cost Group	Class	Base Rate	Depr. Table	Econ. Life	Max. Depr.	Max. Age
R19	R	\$174.31	6	75	80	75
R23	R	\$180.39	6	75	80	75
R24	R	\$189.09	6	75	80	75
RB1	0	\$219.26	5	60	80	99
RB1	A	\$280.85	5	70	80	99
RB1	B	\$288.83	5	70	80	99
RB1	C	\$219.26	5	60	80	99
RB1	D	\$207.83	5	50	80	99
RB1	S	\$201.76	5	50	80	99
RES	R	\$96.10	5	70	80	70
RH1	0	\$192.84	5	70	80	99
RH1	A	\$192.84	5	70	80	99
RH1	B	\$192.84	5	70	80	99
RH1	C	\$192.84	5	70	80	99
RH1	D	\$192.84	5	70	80	99
RH1	S	\$192.84	5	70	80	99
RH2	0	\$268.49	5	60	80	99
RH2	A	\$351.67	5	70	80	99
RH2	B	\$341.50	5	70	80	99
RH2	C	\$268.49	5	60	80	99
RH2	D	\$247.89	5	50	80	99
RH2	S	\$184.34	5	50	80	99
RS1	0	\$290.24	5	60	80	99
RS1	A	\$384.06	5	70	80	99
RS1	B	\$384.06	5	70	80	99
RS1	C	\$290.24	5	60	80	99
RS1	D	\$267.73	5	50	80	99
RS1	S	\$267.67	5	50	80	99
RS2	0	\$313.06	5	60	80	99
RS2	A	\$423.86	5	70	80	99
RS2	B	\$423.86	5	70	80	99
RS2	C	\$313.06	5	60	80	99
RS2	D	\$288.35	5	50	80	99
RS2	S	\$289.77	5	50	80	99
RT1	0	\$195.28	5	60	80	99
RT1	A	\$248.62	5	70	80	99
RT1	B	\$238.39	5	70	80	99
RT1	C	\$195.28	5	60	80	99
RT1	D	\$181.65	5	50	80	99
RT1	S	\$180.75	5	50	80	99
RT2	0	\$188.73	5	60	80	99
RT2	A	\$220.14	5	70	80	99
RT2	B	\$220.14	5	70	80	99
RT2	C	\$188.73	5	60	80	99
RT2	D	\$173.79	5	50	80	99
RT2	S	\$172.84	5	50	80	99
RT3	0	\$299.39	5	60	80	99
RT3	A	\$311.64	5	70	80	99
RT3	B	\$299.39	5	70	80	99
RT3	C	\$244.74	5	60	80	99
RT3	D	\$288.50	5	50	80	99
RT3	S	\$294.01	5	50	80	99
RT4	0	\$186.46	5	60	80	99
RT4	A	\$186.25	5	70	80	99
RT4	B	\$186.25	5	70	80	99
RT4	C	\$186.46	5	60	80	99

2022 Base Cost Rates

Cost Group	Class	Base Rate	Depr. Table	Econ. Life	Max. Depr.	Max. Age
RT4	D	\$170.58	5	50	80	99
RT4	S	\$167.32	5	50	80	99
SIN	R	\$154.17	5	70	80	70
SS1	0	\$382.15	5	70	80	99
SS1	A	\$385.58	5	70	80	99
SS1	B	\$388.95	5	70	80	99
SS1	C	\$382.15	5	70	80	99
SS1	D	\$374.80	5	70	80	99
SS1	S	\$382.15	5	70	80	99
SS2	0	\$309.67	5	60	80	99
SS2	A	\$315.33	5	70	80	99
SS2	B	\$315.33	5	70	80	99
SS2	C	\$309.67	5	60	80	99
SS2	D	\$292.63	5	50	80	99
SS2	S	\$303.62	5	50	80	99
SV1	0	\$138.69	5	60	80	99
SV1	A	\$150.11	5	70	80	99
SV1	B	\$154.47	5	70	80	99
SV1	C	\$138.69	5	60	80	99
SV1	D	\$119.79	5	50	80	99
SV1	S	\$115.48	5	50	80	99
TM1	0	\$91.61	5	60	80	99
TM1	A	\$112.75	5	70	80	99
TM1	B	\$102.18	5	70	80	99
TM1	C	\$91.61	5	60	80	99
TM1	D	\$84.57	5	50	80	99
TM1	S	\$84.57	5	50	80	99
UT1	0	\$160.32	5	60	80	99
UT1	A	\$181.47	5	70	80	99
UT1	B	\$169.13	5	70	80	99
UT1	C	\$160.32	5	60	80	99
UT1	D	\$137.42	5	50	80	99
UT1	S	\$137.42	5	50	80	99
WH1	0	\$93.29	5	60	80	99
WH1	A	\$137.10	5	70	80	99
WH1	B	\$136.25	5	70	80	99
WH1	C	\$93.29	5	60	80	99
WH1	D	\$82.85	5	50	80	99
WH1	S	\$83.86	5	50	80	99
WH2	0	\$78.84	5	60	80	99
WH2	A	\$116.65	5	70	80	99
WH2	B	\$115.24	5	70	80	99
WH2	C	\$78.84	5	60	80	99
WH2	D	\$70.33	5	50	80	99
WH2	S	\$71.10	5	50	80	99
WH3	0	\$110.60	5	60	80	99
WH3	A	\$110.02	5	70	80	99
WH3	B	\$114.27	5	70	80	99
WH3	C	\$123.98	5	60	80	99
WH3	D	\$76.89	5	50	80	99
WH3	S	\$110.60	5	50	80	99

RESIDENTIAL (Class 1)

Neighborhood	Name	Total Base			
		2021	2022	Difference	\% Change
001	American University Park	\$2,715,651,270	\$2,780,597,020	\$64,945,750	2.39\%
002	Anacostia	\$760,414,150	\$808,636,360	\$48,222,210	6.34\%
003	Barry Farms	\$318,802,090	\$327,984,580	\$9,182,490	2.88\%
004	Berkley	\$1,464,443,930	\$1,487,244,760	\$22,800,830	1.56\%
005	Brentwood	\$856,376,550	\$851,775,870	-\$4,600,680	-0.54\%
006	Brightwood	\$2,754,873,650	\$2,818,888,250	\$64,014,600	2.32\%
007	Brookland	\$4,635,837,220	\$4,709,714,138	\$73,876,918	1.59\%
008	Burleith	\$959,816,640	\$978,147,900	\$18,331,260	1.91\%
009	Capitol Hill	\$4,238,448,290	\$4,378,307,090	\$139,858,800	3.30\%
010	Central	\$6,155,616,806	\$6,033,303,496	-\$122,313,310	-1.99\%
011	Chevy Chase	\$5,993,308,702	\$6,111,418,070	\$118,109,368	1.97\%
012	Chillum	\$531,968,950	\$557,842,830	\$25,873,880	4.86\%
013	Cleveland Park	\$3,027,538,360	\$3,067,031,270	\$39,492,910	1.30\%
014	Colonial Village	\$616,736,630	\$648,293,970	\$31,557,340	5.12\%
015	Columbia Heights	\$8,183,175,250	\$8,190,886,560	\$7,711,310	0.09\%
016	Congress Heights	\$1,704,191,465	\$1,775,025,530	\$70,834,065	4.16\%
017	Crestwood	\$894,514,830	\$912,815,170	\$18,300,340	2.05\%
018	Deanwood	\$2,033,476,281	\$2,129,385,770	\$95,909,489	4.72\%
019	Eckington	\$2,044,629,090	\$2,100,788,320	\$56,159,230	2.75\%
020	Foggy Bottom	\$1,337,918,700	\$1,317,492,880	-\$20,425,820	-1.53\%
021	Forest Hills	\$3,048,195,539	\$2,992,856,480	-\$55,339,059	-1.82\%
022	Fort Dupont Park	\$1,144,254,226	\$1,206,436,716	\$62,182,490	5.43\%
023	Foxhall	\$364,717,160	\$371,998,820	\$7,281,660	2.00\%
024	Garfield	\$1,859,655,380	\$1,813,663,150	-\$45,992,230	-2.47\%
025	Georgetown	\$6,212,543,780	\$6,320,554,390	\$108,010,610	1.74\%
026	Glover Park	\$1,579,945,290	\$1,590,236,470	\$10,291,180	0.65\%
027	Hawthorne	\$326,572,060	\$331,138,790	\$4,566,730	1.40\%
028	Hillcrest	\$1,512,655,184	\$1,580,957,905	\$68,302,721	4.52\%
029	Kalorama	\$3,998,353,520	\$4,034,468,660	\$36,115,140	0.90\%
030	Kent	\$1,499,708,750	\$1,539,051,060	\$39,342,310	2.62\%
031	LeDroit Park	\$1,607,679,900	\$1,647,129,330	\$39,449,430	2.45\%
032	Lily Ponds	\$603,731,070	\$630,948,680	\$27,217,610	4.51\%
033	Marshall Heights	\$581,449,270	\$613,023,960	\$31,574,690	5.43\%
034	Massachusetts Av Heights	\$759,994,340	\$768,161,830	\$8,167,490	1.07\%
035	Michigan Park	\$489,436,930	\$508,244,400	\$18,807,470	3.84\%
036	Mount Pleasant	\$4,420,045,510	\$4,412,929,070	-\$7,116,440	-0.16\%
037	North Cleveland Park	\$1,113,344,790	\$1,126,652,510	\$13,307,720	1.20\%
038	Observatory Circle	\$1,517,232,203	\$1,536,905,273	\$19,673,070	1.30\%
039	Old City I	\$15,277,063,473	\$15,816,703,713	\$539,640,240	3.53\%
040	Old City II	\$16,682,053,980	\$16,797,487,640	\$115,433,660	0.69\%
041	Palisades	\$1,327,011,540	\$1,342,505,890	\$15,494,350	1.17\%
042	Petworth	\$4,143,035,080	\$4,337,283,160	\$194,248,080	4.69\%
043	Randle Heights	\$1,387,811,450	\$1,433,295,800	\$45,484,350	3.28\%
044	NoMa	\$1,186,351,340	\$1,176,337,760	-\$10,013,580	-0.84\%
046	SW Waterfront	\$2,891,945,049	\$2,877,103,019	-\$14,842,030	-0.51\%
047	Riggs Park	\$1,347,958,340	\$1,407,230,130	\$59,271,790	4.40\%
048	Shepherd Park	\$813,593,930	\$837,980,010	\$24,386,080	3.00\%
049	Sixteenth Street Heights	\$1,773,656,260	\$1,814,052,030	\$40,395,770	2.28\%
050	Spring Valley	\$1,710,732,080	\$1,733,709,510	\$22,977,430	1.34\%
051	Takoma	\$491,869,090	\$511,049,350	\$19,180,260	3.90\%
052	Trinidad	\$1,915,173,260	\$2,021,553,890	\$106,380,630	5.55\%
053	Wakefield	\$853,622,470	\$843,369,100	-\$10,253,370	-1.20\%
054	Wesley Heights	\$1,930,165,110	\$1,923,144,360	-\$7,020,750	-0.36\%
055	Woodley	\$352,605,410	\$359,584,400	\$6,978,990	1.98\%
056	Woodridge	\$1,508,691,420	\$1,543,830,240	\$35,138,820	2.33\%
059	Rail Road Tracks	\$0	\$0	\$0	0.00\%
063	North Anacostia Park	\$353,370	\$353,370	\$0	0.00\%
064	Anacostia Park	\$0	\$0	\$0	0.00\%
066	Fort Lincoln	\$733,734,410	\$754,714,930	\$20,980,520	2.86\%
067	St. Elizabeth's Hospital	\$4,127,455	\$4,127,455	\$0	0.00\%
068	Bolling AFB \& Naval Research	\$14,875,920	\$12,841,300	-\$2,034,620	-13.68\%
069	D.C. Village	\$0	\$0	\$0	0.00\%
073	Washington Navy Yard	\$537,555,990	\$527,892,540	-\$9,663,450	-1.80\%
	Totals:	\$140,751,240,183	\$143,087,086,925	\$2,335,846,742	1.66\%

COMMERCIAL (Class 2)

Neighborhood	Name	Total Base			
		2021	2022	Difference	\% Change
001	American University Park	\$725,995,740	\$662,306,986	-\$63,688,754	-8.77\%
002	Anacostia	\$273,966,880	\$234,050,420	-\$39,916,460	-14.57\%
003	Barry Farms	\$40,114,110	\$39,183,180	-\$930,930	-2.32\%
004	Berkley	\$21,777,860	\$19,672,560	-\$2,105,300	-9.67\%
005	Brentwood	\$1,093,323,657	\$1,071,078,117	-\$22,245,540	-2.03\%
006	Brightwood	\$274,547,744	\$266,857,114	-\$7,690,630	-2.80\%
007	Brookland	\$924,936,982	\$910,285,711	-\$14,651,271	-1.58\%
008	Burleith	\$0	\$0	\$0	0.00\%
009	Capitol Hill	\$1,035,470,130	\$926,860,850	-\$108,609,280	-10.49\%
010	Central	\$59,075,436,278	\$53,461,007,132	-\$5,614,429,146	-9.50\%
011	Chevy Chase	\$749,984,300	\$670,618,570	-\$79,365,730	-10.58\%
012	Chillum	\$152,238,483	\$156,784,993	\$4,546,510	2.99\%
013	Cleveland Park	\$434,415,280	\$402,134,330	-\$32,280,950	-7.43\%
014	Colonial Village	\$0	\$0	\$0	0.00\%
015	Columbia Heights	\$1,476,308,186	\$1,396,814,804	-\$79,493,382	-5.38\%
016	Congress Heights	\$100,966,612	\$95,920,664	-\$5,045,948	-5.00\%
017	Crestwood	\$950,040	\$973,520	\$23,480	2.47\%
018	Deanwood	\$313,804,579	\$307,949,710	-\$5,854,869	-1.87\%
019	Eckington	\$628,876,739	\$592,111,419	-\$36,765,320	-5.85\%
020	Foggy Bottom	\$4,810,701,420	\$4,478,556,910	-\$332,144,510	-6.90\%
021	Forest Hills	\$773,251,750	\$734,961,230	-\$38,290,520	-4.95\%
022	Fort Dupont Park	\$84,267,480	\$83,881,490	-\$385,990	-0.46\%
023	Foxhall	\$3,529,930	\$3,074,140	-\$455,790	-12.91\%
024	Garfield	\$327,289,950	\$287,386,440	-\$39,903,510	-12.19\%
025	Georgetown	\$3,842,581,585	\$3,520,909,319	-\$321,672,266	-8.37\%
026	Glover Park	\$92,631,816	\$85,985,431	-\$6,646,385	-7.18\%
027	Hawthorne	\$0	\$0	\$0	0.00\%
028	Hillcrest	\$123,588,240	\$115,587,600	-\$8,000,640	-6.47\%
029	Kalorama	\$828,860,976	\$758,218,985	-\$70,641,991	-8.52\%
030	Kent	\$102,355,580	\$98,418,090	-\$3,937,490	-3.85\%
031	LeDroit Park	\$29,655,572	\$27,450,916	-\$2,204,656	-7.43\%
032	Lily Ponds	\$164,388,610	\$161,019,610	-\$3,369,000	-2.05\%
033	Marshall Heights	\$20,677,830	\$19,881,220	-\$796,610	-3.85\%
034	Massachusetts Av Heights	\$122,972,000	\$107,496,200	-\$15,475,800	-12.58\%
035	Michigan Park	\$19,088,400	\$17,972,040	-\$1,116,360	-5.85\%
036	Mount Pleasant	\$643,816,580	\$602,009,440	-\$41,807,140	-6.49\%
037	North Cleveland Park	\$324,631,270	\$304,143,280	-\$20,487,990	-6.31\%
038	Observatory Circle	\$663,193,670	\$681,361,500	\$18,167,830	2.74\%
039	Old City I	\$7,030,135,415	\$6,817,939,390	-\$212,196,025	-3.02\%
040	Old City II	\$7,968,972,967	\$7,460,714,675	-\$508,258,292	-6.38\%
041	Palisades	\$57,908,270	\$55,963,390	-\$1,944,880	-3.36\%
042	Petworth	\$175,506,295	\$169,822,830	-\$5,683,465	-3.24\%
043	Randle Heights	\$169,110,950	\$166,555,790	-\$2,555,160	-1.51\%
044	NoMa	\$4,808,715,180	\$4,590,369,000	-\$218,346,180	-4.54\%
046	SW Waterfront	\$7,642,280,137	\$7,147,916,777	-\$494,363,360	-6.47\%
047	Riggs Park	\$87,880,570	\$84,654,235	-\$3,226,335	-3.67\%
048	Shepherd Park	\$185,726,527	\$183,045,167	-\$2,681,360	-1.44\%
049	Sixteenth Street Heights	\$123,549,630	\$120,090,070	-\$3,459,560	-2.80\%
050	Spring Valley	\$104,544,990	\$92,591,580	-\$11,953,410	-11.43\%
051	Takoma	\$197,352,650	\$191,058,410	-\$6,294,240	-3.19\%
052	Trinidad	\$279,502,050	\$262,805,620	-\$16,696,430	-5.97\%
053	Wakefield	\$16,823,880	\$16,259,570	-\$564,310	-3.35\%
054	Wesley Heights	\$94,960,550	\$84,761,170	-\$10,199,380	-10.74\%
055	Woodley	\$13,620	\$13,620	\$0	0.00\%
056	Woodridge	\$679,375,487	\$674,436,217	-\$4,939,270	-0.73\%
059	Rail Road Tracks	\$1,779,134	\$1,779,134	\$0	0.00\%
063	North Anacostia Park	\$1,705,900	\$1,714,090	\$8,190	0.48\%
064	Anacostia Park	\$1,440,380	\$1,440,380	\$0	0.00\%
066	Fort Lincoln	\$107,640,540	\$104,437,760	-\$3,202,780	-2.98\%
067	St. Elizabeth's Hospital	\$249,540	\$249,540	\$0	0.00\%
068	Bolling AFB \& Naval Research	\$18,479,580	\$18,479,580	\$0	0.00\%
069	D.C. Village	\$463,740	\$455,120	-\$8,620	-1.86\%
073	Washington Navy Yard	\$233,876,600	\$214,271,910	-\$19,604,690	-8.38\%
	Totals:	\$110,288,590,841	\$101,764,748,946	-\$8,523,841,895	-7.73\%

RESIDENTIAL/COMMERCIAL (Classes 1 and 2)

Neighborhood	Name	Total Base			
		2021	2022	Difference	\% Change
001	American University Park	\$3,441,647,010	\$3,442,904,006	\$1,256,996	0.04\%
002	Anacostia	\$1,034,381,030	\$1,042,686,780	\$8,305,750	0.80\%
003	Barry Farms	\$358,916,200	\$367,167,760	\$8,251,560	2.30\%
004	Berkley	\$1,486,221,790	\$1,506,917,320	\$20,695,530	1.39\%
005	Brentwood	\$1,949,700,207	\$1,922,853,987	-\$26,846,220	-1.38\%
006	Brightwood	\$3,029,421,394	\$3,085,745,364	\$56,323,970	1.86\%
007	Brookland	\$5,560,774,202	\$5,619,999,849	\$59,225,647	1.07\%
008	Burleith	\$959,816,640	\$978,147,900	\$18,331,260	1.91\%
009	Capitol Hill	\$5,273,918,420	\$5,305,167,940	\$31,249,520	0.59\%
010	Central	\$65,231,053,084	\$59,494,310,628	-\$5,736,742,456	-8.79\%
011	Chevy Chase	\$6,743,293,002	\$6,782,036,640	\$38,743,638	0.57\%
012	Chillum	\$684,207,433	\$714,627,823	\$30,420,390	4.45\%
013	Cleveland Park	\$3,461,953,640	\$3,469,165,600	\$7,211,960	0.21\%
014	Colonial Village	\$616,736,630	\$648,293,970	\$31,557,340	5.12\%
015	Columbia Heights	\$9,659,483,436	\$9,587,701,364	-\$71,782,072	-0.74\%
016	Congress Heights	\$1,805,158,077	\$1,870,946,194	\$65,788,117	3.64\%
017	Crestwood	\$895,464,870	\$913,788,690	\$18,323,820	2.05\%
018	Deanwood	\$2,347,280,860	\$2,437,335,480	\$90,054,620	3.84\%
019	Eckington	\$2,673,505,829	\$2,692,899,739	\$19,393,910	0.73\%
020	Foggy Bottom	\$6,148,620,120	\$5,796,049,790	-\$352,570,330	-5.73\%
021	Forest Hills	\$3,821,447,289	\$3,727,817,710	-\$93,629,579	-2.45\%
022	Fort Dupont Park	\$1,228,521,706	\$1,290,318,206	\$61,796,500	5.03\%
023	Foxhall	\$368,247,090	\$375,072,960	\$6,825,870	1.85\%
024	Garfield	\$2,186,945,330	\$2,101,049,590	-\$85,895,740	-3.93\%
025	Georgetown	\$10,055,125,365	\$9,841,463,709	-\$213,661,656	-2.12\%
026	Glover Park	\$1,672,577,106	\$1,676,221,901	\$3,644,795	0.22\%
027	Hawthorne	\$326,572,060	\$331,138,790	\$4,566,730	1.40\%
028	Hillcrest	\$1,636,243,424	\$1,696,545,505	\$60,302,081	3.69\%
029	Kalorama	\$4,827,214,496	\$4,792,687,645	-\$34,526,851	-0.72\%
030	Kent	\$1,602,064,330	\$1,637,469,150	\$35,404,820	2.21\%
031	LeDroit Park	\$1,637,335,472	\$1,674,580,246	\$37,244,774	2.27\%
032	Lily Ponds	\$768,119,680	\$791,968,290	\$23,848,610	3.10\%
033	Marshall Heights	\$602,127,100	\$632,905,180	\$30,778,080	5.11\%
034	Massachusetts Av Heights	\$882,966,340	\$875,658,030	-\$7,308,310	-0.83\%
035	Michigan Park	\$508,525,330	\$526,216,440	\$17,691,110	3.48\%
036	Mount Pleasant	\$5,063,862,090	\$5,014,938,510	-\$48,923,580	-0.97\%
037	North Cleveland Park	\$1,437,976,060	\$1,430,795,790	-\$7,180,270	-0.50\%
038	Observatory Circle	\$2,180,425,873	\$2,218,266,773	\$37,840,900	1.74\%
039	Old City I	\$22,307,198,888	\$22,634,643,103	\$327,444,215	1.47\%
040	Old City II	\$24,651,026,947	\$24,258,202,315	-\$392,824,632	-1.59\%
041	Palisades	\$1,384,919,810	\$1,398,469,280	\$13,549,470	0.98\%
042	Petworth	\$4,318,541,375	\$4,507,105,990	\$188,564,615	4.37\%
043	Randle Heights	\$1,556,922,400	\$1,599,851,590	\$42,929,190	2.76\%
044	NoMa	\$5,995,066,520	\$5,766,706,760	-\$228,359,760	-3.81\%
046	SW Waterfront	\$10,534,225,186	\$10,025,019,796	-\$509,205,390	-4.83\%
047	Riggs Park	\$1,435,838,910	\$1,491,884,365	\$56,045,455	3.90\%
048	Shepherd Park	\$999,320,457	\$1,021,025,177	\$21,704,720	2.17\%
049	Sixteenth Street Heights	\$1,897,205,890	\$1,934,142,100	\$36,936,210	1.95\%
050	Spring Valley	\$1,815,277,070	\$1,826,301,090	\$11,024,020	0.61\%
051	Takoma	\$689,221,740	\$702,107,760	\$12,886,020	1.87\%
052	Trinidad	\$2,194,675,310	\$2,284,359,510	\$89,684,200	4.09\%
053	Wakefield	\$870,446,350	\$859,628,670	-\$10,817,680	-1.24\%
054	Wesley Heights	\$2,025,125,660	\$2,007,905,530	-\$17,220,130	-0.85\%
055	Woodley	\$352,619,030	\$359,598,020	\$6,978,990	1.98\%
056	Woodridge	\$2,188,066,907	\$2,218,266,457	\$30,199,550	1.38\%
059	Rail Road Tracks	\$1,779,134	\$1,779,134	\$0	0.00\%
063	North Anacostia Park	\$2,059,270	\$2,067,460	\$8,190	0.40\%
064	Anacostia Park	\$1,440,380	\$1,440,380	\$0	0.00\%
066	Fort Lincoln	\$841,374,950	\$859,152,690	\$17,777,740	2.11\%
067	St. Elizabeth's Hospital	\$4,376,995	\$4,376,995	\$0	0.00\%
068	Bolling AFB \& Naval Research	\$33,355,500	\$31,320,880	-\$2,034,620	-6.10\%
069	D.C. Village	\$463,740	\$455,120	-\$8,620	-1.86\%
073	Washington Navy Yard	\$771,432,590	\$742,164,450	-\$29,268,140	-3.79\%
	Totals:	\$251,039,831,024	\$244,851,835,871	-\$6,187,995,153	-2.46\%

EXEMPT

Neighborhood	Name	Total Base			
		2021	2022	Difference	\% Change
001	American University Park	\$542,181,050	\$541,507,000	-\$674,050	-0.12\%
002	Anacostia	\$98,446,540	\$103,336,170	\$4,889,630	4.97\%
003	Barry Farms	\$195,090,770	\$192,446,430	-\$2,644,340	-1.36\%
004	Berkley	\$344,135,180	\$346,079,660	\$1,944,480	0.57\%
005	Brentwood	\$273,945,530	\$274,776,180	\$830,650	0.30\%
006	Brightwood	\$117,454,870	\$116,070,870	-\$1,384,000	-1.18\%
007	Brookland	\$2,834,935,910	\$2,848,854,490	\$13,918,580	0.49\%
008	Burleith	\$97,267,850	\$97,535,630	\$267,780	0.28\%
009	Capitol Hill	\$259,430,600	\$257,824,540	-\$1,606,060	-0.62\%
010	Central	\$4,624,002,090	\$4,428,864,331	-\$195,137,759	-4.22\%
011	Chevy Chase	\$508,517,070	\$505,417,400	-\$3,099,670	-0.61\%
012	Chillum	\$52,704,350	\$53,367,740	\$663,390	1.26\%
013	Cleveland Park	\$235,925,250	\$235,635,450	-\$289,800	-0.12\%
014	Colonial Village	\$61,356,580	\$62,195,140	\$838,560	1.37\%
015	Columbia Heights	\$1,556,153,310	\$1,530,501,580	-\$25,651,730	-1.65\%
016	Congress Heights	\$728,261,530	\$715,835,590	-\$12,425,940	-1.71\%
017	Crestwood	\$55,721,350	\$56,389,200	\$667,850	1.20\%
018	Deanwood	\$457,753,510	\$463,814,440	\$6,060,930	1.32\%
019	Eckington	\$108,303,490	\$78,323,260	-\$29,980,230	-27.68\%
020	Foggy Bottom	\$4,916,645,130	\$4,749,715,430	-\$166,929,700	-3.40\%
021	Forest Hills	\$621,271,230	\$625,402,470	\$4,131,240	0.66\%
022	Fort Dupont Park	\$201,020,120	\$203,309,510	\$2,289,390	1.14\%
023	Foxhall	\$524,920	\$527,600	\$2,680	0.51\%
024	Garfield	\$172,715,070	\$163,051,290	-\$9,663,780	-5.60\%
025	Georgetown	\$958,524,460	\$970,630,050	\$12,105,590	1.26\%
026	Glover Park	\$36,080,019	\$36,405,280	\$325,261	0.90\%
027	Hawthorne	\$936,270	\$948,540	\$12,270	1.31\%
028	Hillcrest	\$71,667,310	\$71,508,410	-\$158,900	-0.22\%
029	Kalorama	\$1,199,238,293	\$1,217,845,593	\$18,607,300	1.55\%
030	Kent	\$99,428,540	\$100,539,060	\$1,110,520	1.12\%
031	LeDroit Park	\$731,742,900	\$738,345,840	\$6,602,940	0.90\%
032	Lily Ponds	\$141,533,570	\$141,198,080	-\$335,490	-0.24\%
033	Marshall Heights	\$117,334,870	\$118,517,840	\$1,182,970	1.01\%
034	Massachusetts Av Heights	\$894,838,810	\$897,765,380	\$2,926,570	0.33\%
035	Michigan Park	\$55,487,680	\$55,899,600	\$411,920	0.74\%
036	Mount Pleasant	\$335,467,670	\$326,242,010	-\$9,225,660	-2.75\%
037	North Cleveland Park	\$114,025,030	\$113,326,660	-\$698,370	-0.61\%
038	Observatory Circle	\$628,060,240	\$627,710,216	-\$350,024	-0.06\%
039	Old City I	\$739,541,410	\$768,879,710	\$29,338,300	3.97\%
040	Old City II	\$2,248,831,734	\$2,235,740,614	-\$13,091,120	-0.58\%
041	Palisades	\$44,054,120	\$44,092,060	\$37,940	0.09\%
042	Petworth	\$136,060,840	\$134,726,780	-\$1,334,060	-0.98\%
043	Randle Heights	\$272,138,880	\$273,391,690	\$1,252,810	0.46\%
044	NoMa	\$240,950,320	\$237,121,720	-\$3,828,600	-1.59\%
046	SW Waterfront	\$493,268,637	\$507,686,547	\$14,417,910	2.92\%
047	Riggs Park	\$89,601,070	\$89,742,010	\$140,940	0.16\%
048	Shepherd Park	\$134,442,198	\$134,696,598	\$254,400	0.19\%
049	Sixteenth Street Heights	\$145,547,350	\$144,526,080	-\$1,021,270	-0.70\%
050	Spring Valley	\$447,556,380	\$449,911,410	\$2,355,030	0.53\%
051	Takoma	\$37,094,300	\$37,186,370	\$92,070	0.25\%
052	Trinidad	\$108,901,690	\$103,609,480	-\$5,292,210	-4.86\%
053	Wakefield	\$9,926,770	\$10,012,950	\$86,180	0.87\%
054	Wesley Heights	\$93,044,920	\$93,346,220	\$301,300	0.32\%
055	Woodley	\$126,581,110	\$126,761,250	\$180,140	0.14\%
056	Woodridge	\$280,042,780	\$267,020,690	-\$13,022,090	-4.65\%
059	Rail Road Tracks	\$1,056,599	\$1,056,599	\$0	0.00\%
063	North Anacostia Park	\$2,143,300	\$2,143,300	\$0	0.00\%
064	Anacostia Park	\$0	\$0	\$0	0.00\%
066	Fort Lincoln	\$5,684,440	\$6,042,480	\$358,040	6.30\%
067	St. Elizabeth's Hospital	\$3,724,310	\$3,724,310	\$0	0.00\%
068	Bolling AFB \& Naval Research	\$0	\$0	\$0	0.00\%
069	D.C. Village	\$46,466,930	\$47,229,850	\$762,920	1.64\%
073	Washington Navy Yard	\$401,580	\$473,030	\$71,450	17.79\%
	Totals:	\$30,155,190,630	\$29,786,785,708	-\$368,404,922	-1.22\%

ALL PROPERTIES

Neighborhood	Name	Total Base			
		2021	2022	Difference	\% Change
001	American University Park	\$3,983,828,060	\$3,984,411,006	\$582,946	0.01\%
002	Anacostia	\$1,132,827,570	\$1,146,022,950	\$13,195,380	1.16\%
003	Barry Farms	\$554,006,970	\$559,614,190	\$5,607,220	1.01\%
004	Berkley	\$1,830,356,970	\$1,852,996,980	\$22,640,010	1.24\%
005	Brentwood	\$2,223,645,737	\$2,197,630,167	-\$26,015,570	-1.17\%
006	Brightwood	\$3,146,876,264	\$3,201,816,234	\$54,939,970	1.75\%
007	Brookland	\$8,395,710,112	\$8,468,854,339	\$73,144,227	0.87\%
008	Burleith	\$1,057,084,490	\$1,075,683,530	\$18,599,040	1.76\%
009	Capitol Hill	\$5,533,349,020	\$5,562,992,480	\$29,643,460	0.54\%
010	Central	\$69,855,055,174	\$63,923,174,959	-\$5,931,880,215	-8.49\%
011	Chevy Chase	\$7,251,810,072	\$7,287,454,040	\$35,643,968	0.49\%
012	Chillum	\$736,911,783	\$767,995,563	\$31,083,780	4.22\%
013	Cleveland Park	\$3,697,878,890	\$3,704,801,050	\$6,922,160	0.19\%
014	Colonial Village	\$678,093,210	\$710,489,110	\$32,395,900	4.78\%
015	Columbia Heights	\$11,215,636,746	\$11,118,202,944	-\$97,433,802	-0.87\%
016	Congress Heights	\$2,533,419,607	\$2,586,781,784	\$53,362,177	2.11\%
017	Crestwood	\$951,186,220	\$970,177,890	\$18,991,670	2.00\%
018	Deanwood	\$2,805,034,370	\$2,901,149,920	\$96,115,550	3.43\%
019	Eckington	\$2,781,809,319	\$2,771,222,999	-\$10,586,320	-0.38\%
020	Foggy Bottom	\$11,065,265,250	\$10,545,765,220	-\$519,500,030	-4.69\%
021	Forest Hills	\$4,442,718,519	\$4,353,220,180	-\$89,498,339	-2.01\%
022	Fort Dupont Park	\$1,429,541,826	\$1,493,627,716	\$64,085,890	4.48\%
023	Foxhall	\$368,772,010	\$375,600,560	\$6,828,550	1.85\%
024	Garfield	\$2,359,660,400	\$2,264,100,880	-\$95,559,520	-4.05\%
025	Georgetown	\$11,013,649,825	\$10,812,093,759	-\$201,556,066	-1.83\%
026	Glover Park	\$1,708,657,125	\$1,712,627,181	\$3,970,056	0.23\%
027	Hawthorne	\$327,508,330	\$332,087,330	\$4,579,000	1.40\%
028	Hillcrest	\$1,707,910,734	\$1,768,053,915	\$60,143,181	3.52\%
029	Kalorama	\$6,026,452,789	\$6,010,533,238	-\$15,919,551	-0.26\%
030	Kent	\$1,701,492,870	\$1,738,008,210	\$36,515,340	2.15\%
031	LeDroit Park	\$2,369,078,372	\$2,412,926,086	\$43,847,714	1.85\%
032	Lily Ponds	\$909,653,250	\$933,166,370	\$23,513,120	2.58\%
033	Marshall Heights	\$719,461,970	\$751,423,020	\$31,961,050	4.44\%
034	Massachusetts Av Heights	\$1,777,805,150	\$1,773,423,410	-\$4,381,740	-0.25\%
035	Michigan Park	\$564,013,010	\$582,116,040	\$18,103,030	3.21\%
036	Mount Pleasant	\$5,399,329,760	\$5,341,180,520	-\$58,149,240	-1.08\%
037	North Cleveland Park	\$1,552,001,090	\$1,544,122,450	-\$7,878,640	-0.51\%
038	Observatory Circle	\$2,808,486,113	\$2,845,976,989	\$37,490,876	1.33\%
039	Old City I	\$23,046,740,298	\$23,403,522,813	\$356,782,515	1.55\%
040	Old City II	\$26,899,858,681	\$26,493,942,929	-\$405,915,752	-1.51\%
041	Palisades	\$1,428,973,930	\$1,442,561,340	\$13,587,410	0.95\%
042	Petworth	\$4,454,602,215	\$4,641,832,770	\$187,230,555	4.20\%
043	Randle Heights	\$1,829,061,280	\$1,873,243,280	\$44,182,000	2.42\%
044	NoMa	\$6,236,016,840	\$6,003,828,480	-\$232,188,360	-3.72\%
046	SW Waterfront	\$11,027,493,823	\$10,532,706,343	-\$494,787,480	-4.49\%
047	Riggs Park	\$1,525,439,980	\$1,581,626,375	\$56,186,395	3.68\%
048	Shepherd Park	\$1,133,762,655	\$1,155,721,775	\$21,959,120	1.94\%
049	Sixteenth Street Heights	\$2,042,753,240	\$2,078,668,180	\$35,914,940	1.76\%
050	Spring Valley	\$2,262,833,450	\$2,276,212,500	\$13,379,050	0.59\%
051	Takoma	\$726,316,040	\$739,294,130	\$12,978,090	1.79\%
052	Trinidad	\$2,303,577,000	\$2,387,968,990	\$84,391,990	3.66\%
053	Wakefield	\$880,373,120	\$869,641,620	-\$10,731,500	-1.22\%
054	Wesley Heights	\$2,118,170,580	\$2,101,251,750	-\$16,918,830	-0.80\%
055	Woodley	\$479,200,140	\$486,359,270	\$7,159,130	1.49\%
056	Woodridge	\$2,468,109,687	\$2,485,287,147	\$17,177,460	0.70\%
059	Rail Road Tracks	\$2,835,733	\$2,835,733	\$0	0.00\%
063	North Anacostia Park	\$4,202,570	\$4,210,760	\$8,190	0.19\%
064	Anacostia Park	\$1,440,380	\$1,440,380	\$0	0.00\%
066	Fort Lincoln	\$847,059,390	\$865,195,170	\$18,135,780	2.14\%
067	St. Elizabeth's Hospital	\$8,101,305	\$8,101,305	\$0	0.00\%
068	Bolling AFB \& Naval Research	\$33,355,500	\$31,320,880	-\$2,034,620	-6.10\%
069	D.C. Village	\$46,930,670	\$47,684,970	\$754,300	1.61\%
073	Washington Navy Yard	\$771,834,170	\$742,637,480	-\$29,196,690	-3.78\%
	Totals:	\$281,195,021,654	\$274,638,621,579	-\$6,556,400,075	-2.33\%

Parcel Count per Neighborhood-2022

NBHD	NAME	Residential	Commercial	Exempt	Total
001	AMERICAN UNIV. PARK	2,705	86	34	2,825
002	ANACOSTIA	2,131	181	105	2,417
003	BARRY FARMS	956	40	78	1,074
004	BERKLEY	810	7	42	859
005	BRENTWOOD	1,099	338	79	1,516
006	BRIGHTWOOD	4,476	145	92	4,713
007	BROOKLAND	8,245	268	361	8,874
008	BURLEITH	858		5	863
009	CAPITOL HILL	4,163	317	73	4,553
010	CENTRAL	7,139	1,296	164	8,599
011	CHEVY CHASE	5,775	149	57	5,981
012	CHILLUM	1,063	66	60	1,189
013	CLEVELAND PARK	3,404	50	43	3,497
014	COLONIAL VILLAGE	650		18	668
015	COLUMBIA HEIGHTS	11,738	484	323	12,545
016	CONGRESS HEIGHTS	5,418	140	350	5,908
017	CRESTWOOD	823	1	22	846
018	DEANWOOD	7,052	264	409	7,725
019	ECKINGTON	2,755	151	52	2,958
020	FOGGY BOTTOM	2,178	145	120	2,443
021	FOREST HILLS	3,322	63	60	3,445
022	FORT DUPONT PARK	3,579	47	157	3,783
023	FOXHALL	370	1	1	372
024	GARFIELD	1,397	45	228	1,670
025	GEORGETOWN	4,633	612	197	5,442
026	GLOVER PARK	2,655	53	37	2,745
027	HAWTHORNE	314		1	315
028	HILLCREST	4,554	148	58	4,760
029	KALORAMA	3,812	127	206	4,145
030	KENT	906	30	21	957
031	LEDROIT PARK	1,988	27	40	2,055
032	LILY PONDS	1,681	48	42	1,771
033	MARSHALL HEIGHTS	2,039	23	145	2,207
034	MASS. AVE. HEIGHTS	194	1	54	249
035	MICHIGAN PARK	939	13	8	960
036	MOUNT PLEASANT	4,822	209	115	5,146
037	N. CLEVELAND PARK	880	43	8	931
038	OBSERVATORY CIRCLE	1,772	40	76	1,888
039	OLD CITY I	18,062	898	207	19,167
040	OLD CITY II	21,500	1,146	359	23,005
041	PALISADES	1,410	53	30	1,493
042	PETWORTH	6,947	243	84	7,274
043	RANDLE HEIGHTS	3,796	61	238	4,095
044	NOMA	941	187	19	1,147
046	SW WATERFRONT	3,953	284	86	4,323
047	RIGGS PARK	2,974	41	23	3,038
048	SHEPHERD PARK	1,025	45	22	1,092
049	16TH ST. HEIGHTS	2,490	110	72	2,672
050	SPRING VALLEY	937	8	36	981
051	TAKOMA	922	60	67	1,049
052	TRINIDAD	3,639	99	64	3,802
053	WAKEFIELD	965	15	6	986
054	WESLEY HEIGHTS	3,028	4	22	3,054
055	WOODLEY	209	1	3	213
056	WOODRIDGE	3,063	375	71	3,509
059	RAIL ROAD TRACKS		3	4	7
060	N. ROCK CREEK PARK				
061	NATL. ZOO				
062	S. ROCK CREEK PARK				
063	N. ANACOSTIA PARK	1	2	11	14
064	ANACOSTIA PARK		1		1
065	NATIONAL ARBORETUM				
066	FORT LINCOLN	1,401	9	15	1,425
067	ST. ELIZABETHS HOSPITAL	46	2	2	50
068	BOLLING AFB \& NAVAL RES	9	20		29
069	D.C. VILLAGE		1	1	2
070	FORT DRIVE				
071	GLOVER-ARCHBOLD PWY				
072	MALL				
073	WASHINGTON NAVY YARD	161	18	1	180
	TOTALS:	190,774	9,344	5,384	205,502

*DC and US $(5,372)$ not included in Base Report Statistics
**PI accounts (323) not included in Base Report Statistics

Preliminary 2022 Performance Report

Sales Ratio Report Using Current 2021 Values

2020 SALES RATIOS BY NEIGHBORHOOD: SINGLE-FAMILY

NB NAME
SALES AVE PRICE MED PRICE MEDIAN MEAN WEIGHTED

1	AMERICAN UNIVERSITY
2	ANACOSTIA
3	BARRY FARMS
4	BERKELEY
5	BRENTWOOD
6	BRIGHTWOOD
7	BROOKLAND
8	BURLEITH
9	CAPITOL HILL
10	CENTRAL
11	CHEVY CHASE
12	CHILLUM
13	CLEVELAND PARK
14	COLONIAL VILLAGE
15	COLUMBIA HEIGHTS
16	CONGRESS HEIGHTS
17	CRESTWOOD
18	DEANWOOD
19	ECKINGTON
20	FOGGY BOTTOM
21	FOREST HILLS
22	FORT DUPONT PARK
23	FOXHALL
24	GARFIELD
25	GEORGETOWN
26	GLOVER PARK
27	HAWTHORNE
28	HILLCREST
29	KALORAMA
30	KENT
31	LEDROIT PARK
32	LILY PONDS
33	MARSHALL HEIGHTS
34	MASS. AVE. HEIGHTS
35	MICHIGAN PARK
36	MOUNT PLEASANT
37	N. CLEVELAND PARK
38	OBSERVATORY CIRCLE
39	OLD CITY \#1
40	OLD CITY \#2
41	PALISADES
42	PETWORTH
43	RANDLE HEIGHTS
46	SW WATERFRONT
47	RIGGS PARK
48	SHEPHERD PARK
49	16TH STREET HEIGHTS
50	SPRING VALLEY
51	TAKOMA PARK
52	TRINIDAD
53	WAKEFIELD
54	WESLEY HEIGHTS
55	WOODLEY
56	WOODRIDGE
66	FORT LINCOLN

76
62
23
22
29
149
232
39

$1,307,100$	$1,311,250$
535,977	534,835
418,830	415,000
$2,356,886$	$2,212,500$
590,955	590,000
750,194	740,000
757,849	768,344
$1,527,955$	$1,450,000$
$1,297,134$	$1,200,000$

$\begin{array}{rrr}4 & 1,572,500 & 1,530,000 \\ 172 & 1,256,675 & 1,172,500 \\ 33 & 680,278 & 680,000\end{array}$
2,017,044 1,797,500
1,134,762 1,115,000
881,297 849,999
423,253 402,500
1,272,107 1,275,000 412,917 410,000 950,047 925,000 860,000 860,000
1,890, 458 1,762,500 432,633 422,700
1,113,946 969,000
1,763, 025 1, 627, 250
1,976,153 1,527,500
1,110,557 1,050,000
1,347,577 1, 090, 000 575,622 554,500
2,393,769 2,050,000
1,896,219 1,672,000
1,128,753 1,105,000
477,777 467,000
406,754 415,000
3,768,571 4,000,000 689,254 705,000
1,250,591 1,274,000
1,407,918 1,398, 000
1,926,126 1,849, 373 947,141 880,000
1,306,738 1,175,000
1,622,890 1,370, 000 783,573 779,500 437,504 401,500
1,030,250 1,072,500 549,929 550,000
1, 090,750 930,000
1,025,640 952,500
1,935,289 1,695, 000 634,508 615,000 710,951 710,000
1,427,527 1,312,500
1,392,493 1,170,000
1,757,931 1,700, 000
$\begin{array}{ll}730,538 & 745,000 \\ 638,453 & 612,500\end{array}$
$88.6 \quad 88.2$
$87.7 \quad 8.9$
74
PRD

Sales Ratio Report Using Proposed 2022 Values

2020 SALES RATIOS BY NEIGHBORHOOD: SINGLE-FAMILY

NB NAME
SALES

1	AMERICAN UNIVERSITY
2	ANACOSTIA
3	BARRY FARMS
4	BERKELEY
5	BRENTWOOD
6	BRIGHTWOOD
7	BROOKLAND
8	BURLEITH
9	CAPITOL HILL
10	CENTRAL
11	CHEVY CHASE
12	CHILLUM
13	CLEVELAND PARK
14	COLONIAL VILLAGE
15	COLUMBIA HEIGHTS
16	CONGRESS HEIGHTS
17	CRESTWOOD
18	DEANWOOD
19	ECKINGTON
20	FOGGY BOTTOM
21	FOREST HILLS
22	FORT DUPONT PARK
23	FOXHALL
24	GARFIELD
25	GEORGETOWN
26	GLOVER PARK
27	HAWTHORNE
28	HILLCREST
29	KALORAMA
30	KENT
31	LEDROIT PARK
32	LILY PONDS
33	MARSHALL HEIGHTS
34	MASS. AVE. HEIGHTS
35	MICHIGAN PARK
36	MOUNT PLEASANT
37	N. CLEVELAND PARK
38	OBSERVATORY CIRCLE
39	OLD CITY \#1
40	OLD CITY \#2
41	PALISADES
42	PETWORTH
43	RANDLE HEIGHTS
46	SW WATERFRONT
47	RIGGGS PARK
48	SHEPHERD PARK
49	16TH STREET HEIGHTS
50	SPRING VALLEY
51	TAKOMA PARK
52	TRINIDAD
53	WAKEFIELD
54	WESLEY HEIGHTS
55	WOODLEY
56	WOODRIDGE
66	FORT LINCOLN

76
62
23
22
29
149
232
39

$1,307,100$	$1,311,250$
535,977	534,835
418,830	415,000
$2,356,886$	$2,212,500$
590,955	590,000
750,194	740,000
757,849	768,344
$1,527,955$	$1,450,000$
$1,297,134$	$1,200,000$

$\begin{array}{rrr}4 & 1,572,500 & 1,530,000 \\ 172 & 1,256,675 & 1,172,500 \\ 33 & 680,278 & 680,000\end{array}$
2,017,044 1,797,500
1,134,762 1,115,000
881,297 849,999
423,253 402,500
1,272,107 1,275, 000 412,917 410,000 950, 047 925,000 860,000 860,000
1,890, 458 1, 762, 500 432,633 422,700
1,113,946 969,000
1,763,025 1,627,250
1,976,153 1,527,500
1,110,557 1,050,000
1,347,577 1, 090, 000
575,622 554,500
2,393,769 2,050,000
1,896,219 1,672,000
1,128,753 1,105, 000
97.1
96.7
$96.8 \quad 2.9$
75

1	1.00
3	1.00
2	1.00
0	.99
2	1.00
4	1.00
21	1.00
5	1.00
17	1.01
0	1.00
8	1.00
1	1.00
4	1.01
2	1.00
17	1.00
15	1.00
0	1.00
12	1.00
2	1.00
0	1.00
1	1.00
12	1.00
0	1.00
0	.99
5	1.01
1	1.00
0	1.00
5	1.00
2	1.00
3	1.00
7	1.00
6	1.00
1	1.00
0	1.00
2	1.00
7	1.00
4	1.00
1	.99
71	1.01
19	1.01
4	1.00
47	1.01
2	1.00
1	1.00
4	1.00
1	1.00
4	1.00
8	1.00
0	1.00
29	1.02
1	1.00
2	1.00
0	1.00
8	1.00
3	1.00

TOTALS:
PROPERTY TYPE SALES AVE PRICE MED PRICE MEDIAN MEAN WEIGHTED COD < $105>105$ PRD

Single-Family	4,341	958,751	825,400	97.7	96.2	96.4	6.1	3,964	377	1.00

Sales Ratio Report Using Current 2021 Values

2020 SALES RATIOS BY NEIGHBORHOOD: CONDOMINIUMS

NB NAME
SALES AVE PRICE MED PRICE MEDIAN MEAN WEIGHTED COD < 105 > 105
PRD

1	AMERICAN UNIVERSITY	10	578,500	572,500	98.3	96.6	96.0	4.8	9	1	1.01
2	ANACOSTIA	7	344,700	360, 000	83.3	83.2	84.2	9.2	7	0	99
3	BARRY FARMS	13	229,554	120, 000	79.0	77.6	78.2	12.5	12	1	99
4	BERKELEY	7	583,357	665,500	96.3	96.3	96.3	1.4	7	0	1.00
5	BRENTWOOD	32	404,294	373,250	97.0	98.8	98.2	4.4	29	3	1.01
6	BRIGHTWOOD	29	464,387	435, 000	95.8	94.9	95.5	5.7	27	2	. 99
7	BROOKLAND	99	409,120	410, 000	93.5	93.6	93.4	6.5	92	7	1.00
8	BURLEITH	3	585, 500	452,500	100.0	99.8	99.7	. 2	3	0	1.00
9	CAPITOL HILL	52	452,321	399,945	94.9	97.3	96.8	9.0	41	11	1.00
10	CENTRAL	292	707,073	552,500	97.9	98.6	99.0	8.1	223	69	1.00
11	CHEVY CHASE	26	455,825	399,975	94.5	92.7	92.8	7.5	24	2	1.00
12	CHILLUM	3	345, 067	334,800	104.9	102	101.6	4.4	2	1	1.00
13	CLEVELAND PARK	81	463,369	461, 200	92.9	92.1	90.4	7.3	74	7	1.02
15	COLUMBIA HEIGHTS	448	556,106	533,500	97.1	98.3	98.4	5.9	373	75	1.00
16	CONGRESS HEIGHTS	27	162,059	165,000	90.5	91.9	88.0	18.9	21	6	1.04
18	DEANWOOD	14	161,277	145, 000	88.3	86.7	85.9	9.6	14	0	1.01
19	ECKINGTON	186	553,919	509,525	88.7	89.7	89.1	9.6	177	9	1.01
20	FOGGY BOTTOM	31	305,191	255,000	94.6	97.6	96.7	7.2	26	5	1.01
21	FOREST HILLS	34	396,465	380,500	93.3	93.1	91.6	7.9	29	5	1.02
22	FORT DUPONT PARK	11	168,980	112,500	69.6	75.2	69.1	29.1	10	1	1.09
24	GARFIELD	36	639,592	476,250	94.1	96.1	99.2	7.0	31	5	. 97
25	GEORGETOWN	57	839,618	590, 000	95.0	94.7	93.7	10.6	44	13	1.01
26	GLOVER PARK	71	395,328	330, 000	94.1	94.0	93.9	7.4	66	5	1.00
28	HILLCREST	38	211,715	172,000	86.0	85.1	84.8	17.3	35	3	1.00
29	KALORAMA	118	559,162	545, 000	95.2	94.8	94.1	6.9	105	13	1.01
31	LEDROIT PARK	56	622,359	636,700	97.0	96.6	96.5	4.4	52	4	1.00
32	LILY PONDS	1	402,650	402, 650	88.7	88.7	88.7	. 0	1	0	1.00
33	MARSHALL HEIGHTS	34	356,245	426,000	84.0	82.2	82.2	13.1	32	2	1.00
36	MOUNT PLEASANT	164	591,135	574,000	95.0	95.9	95.2	6.2	147	17	1.01
37	N. CLEVELAND PARK	1	479, 000	479, 000	96.5	96.5	96.5	. 0	1	0	1.00
38	OBSERVATORY CIRCLE	47	509, 006	375,000	90.4	92.1	91.9	9.0	42	5	1.00
39	OLD CITY \#1	504	624,976	570,000	95.0	94.0	94.1	5.7	474	30	1.00
40	OLD CITY \#2	736	598, 534	553,950	96.3	96.0	95.4	6.8	650	86	1.01
41	PALISADES	13	278,957	260, 000	94.3	97.6	95.6	11.1	11	2	1.02
42	PETWORTH	126	458,109	433,950	95.7	94.6	95.1	5.8	118	8	. 99
43	RANDLE HEIGHTS	19	165, 760	150, 000	93.9	88.2	79.3	21.7	14	5	1.11
46	SW WATERFRONT	113	488, 641	409, 000	93.5	92.9	91.3	8.0	104	9	1.02
49	16TH STREET HEIGHTS	36	406,586	358,700	97.0	97.4	96.9	3.0	33	3	1.00
50	SPRING VALLEY	1	330,500	330,500	91.7	91.7	91.7	. 0	1	0	1.00
51	TAKOMA PARK	7	446,419	465, 000	97.0	97.0	97.0	. 0	7	0	1.00
52	TRINIDAD	93	422,502	390,600	99.5	97.6	97.6	6.2	81	12	1.00
53	WAKEFIELD	18	341,700	317,000	104.6	107	103.8	9.7	9	9	1.03
54	WESLEY HEIGHTS	46	549,615	531,950	92.6	94.1	91.1	8.8	38	8	1.03
56	WOODRIDGE	12	392,150	410, 000	89.5	92.6	92.0	9.2	10	2	1.01
66	FORT LINCOLN	17	382,662	375, 000	87.9	88.7	88.4	9.4	15	2	1.00
73	WASHINGTON NAVY YARD	13	762,954	799,900	94.7	94.0	94.8	5.4	13	0	. 99

TOTALS:
PROPERTY TYPE SALES AVE PRICE MED PRICE MEDIAN MEAN WEIGHTED COD < $105>105$ PRD

Condominium	3,782	548,598	499,900	95.8	95.0	95.0	7.6	3,334	448	1.00

Sales Ratio Report Using Proposed 2022 Values

2020 SALES RATIOS BY NEIGHBORHOOD: CONDOMINIUMS

NB NAME
SALES AVE PRICE MED PRICE MEDIAN MEAN WEIGHTED COD < 105 > 105 PRD

1	AMERICAN UNIVERSITY	10	578,500	572,500	96.6	98.5	97.3	7.0	9	1	1.01
2	ANACOSTIA	7	344,700	360, 000	97.2	97.0	97.4	2.5	7	0	1.00
3	BARRY FARMS	13	229,554	120, 000	90.6	88.2	88.5	12.6	12	1	1.00
4	BERKELEY	7	583,357	665,500	95.4	95.8	95.6	1.4	7	0	1.00
5	BRENTWOOD	32	404,294	373,250	97.0	99.4	98.9	4.8	26	6	1.01
6	BRIGHTWOOD	29	464,387	435, 000	98.9	98.2	98.6	5.3	27	2	1.00
7	BROOKLAND	99	409,120	410, 000	96.7	96.5	96.2	5.4	88	11	1.00
8	BURLEITH	3	585,500	452,500	100.0	99.8	99.7	2	3	0	1.00
9	CAPITOL HILL	52	452,321	399,945	98.4	99.4	98.7	6.9	45	7	1.01
10	CENTRAL	292	707,073	552,500	99.9	99.8	100.2	6.1	226	66	1.00
11	CHEVY CHASE	26	455,825	399,975	97.8	96.4	97.1	7.2	21	5	. 99
12	CHILLUM	3	345, 067	334, 800	102.0	100	100.7	1.9	3	0	1.00
13	CLEVELAND PARK	81	463, 369	461, 200	97.0	97.2	95.9	5.5	69	12	1.01
15	COLUMBIA HEIGHTS	448	556,106	533,500	97.6	98.8	98.8	5.4	376	72	1.00
16	CONGRESS HEIGHTS	27	162,059	165, 000	97.1	100	96.6	12.3	21	6	1.04
18	DEANWOOD	14	161,277	145, 000	93.2	94.6	93.7	7.0	13	1	1.01
19	ECKINGTON	186	553, 919	509,525	97.0	95.1	94.2	8.1	163	23	1.01
20	FOGGY BOTTOM	31	305,191	255, 000	96.1	97.3	96.2	6.0	27	4	1.01
21	FOREST HILLS	34	396,465	380,500	100.0	98.0	97.3	5.6	28	6	1.01
22	FORT DUPONT PARK	11	168,980	112,500	97.1	96.2	89.8	12.2	10	1	1.07
24	GARFIELD	36	639,592	476,250	97.2	98.3	98.6	6.3	28	8	1.00
25	GEORGETOWN	57	839,618	590, 000	98.2	97.5	95.8	9.2	43	14	1.02
26	GLOVER PARK	71	395,328	330, 000	97.3	97.3	96.1	5.6	65	6	1.01
28	HILLCREST	38	211,715	172,000	93.4	93.1	91.3	15.6	30	8	1.02
29	KALORAMA	118	559,162	545, 000	98.6	98.0	97.3	4.9	105	13	1.01
31	LEDROIT PARK	56	622,359	636,700	97.0	98.1	98.1	4.5	50	6	1.00
32	LILY PONDS	1	402,650	402, 650	97.0	97.0	97.0	. 0	1	0	1.00
33	MARSHALL HEIGHTS	34	356,245	426, 000	92.0	91.0	90.5	12.6	29	5	1.00
36	MOUNT PLEASANT	164	591,135	574,000	97.9	97.3	96.9	4.7	151	13	1.00
37	N. CLEVELAND PARK	1	479, 000	479, 000	99.1	99.1	99.1	. 0	1	0	1.00
38	OBSERVATORY CIRCLE	47	509, 006	375, 000	98.1	96.5	95.8	7.4	39	8	1.01
39	OLD CITY \#1	504	624,976	570, 000	97.0	96.7	96.5	5.2	452	52	1.00
40	OLD CITY \#2	736	598,534	553, 950	97.0	97.8	97.0	5.4	641	95	1.01
41	PALISADES	13	278,957	260,000	95.9	101	99.1	9.9	11	2	1.02
42	PETWORTH	126	458,109	433, 950	99.2	97.8	97.8	4.3	116	10	1.00
43	RANDLE HEIGHTS	19	165,760	150, 000	101.1	99.1	89.3	22.8	11	8	1.11
46	SW WATERFRONT	113	488, 641	409, 000	98.0	96.2	94.9	7.1	97	16	1.01
49	16TH STREET HEIGHTS	36	406,586	358,700	97.0	98.7	98.5	3.2	32	4	1.00
50	SPRING VALLEY	1	330,500	330,500	93.6	93.6	93.6	. 0	1	0	1.00
51	TAKOMA PARK	7	446,419	465, 000	97.0	97.0	97.0	. 0	7	0	1.00
52	TRINIDAD	93	422,502	390,600	100.0	100	100.1	4.4	78	15	1.00
53	WAKEFIELD	18	341,700	317,000	103.8	105	102.3	9.7	10	8	1.03
54	WESLEY HEIGHTS	46	549,615	531,950	97.2	97.3	95.8	6.2	38	8	1.02
56	WOODRIDGE	12	392,150	410, 000	97.4	97.6	97.2	6.2	10	2	1.00
66	FORT LINCOLN	17	382,662	375, 000	93.3	95.6	95.1	8.3	15	2	1.01
73	WASHINGTON NAVY YARD	13	762,954	799,900	97.5	97.3	96.6	4.5	12	1	1.01

TOTALS:
PROPERTY TYPE SALES AVE PRICE MED PRICE MEDIAN MEAN WEIGHTED COD < $105>105$ PRD

Condominium	3,782	548,598	499,900	97.3	97.6	97.2	6.1	3,254	528	1.00

Sales Ratio Report Using Current 2021 Values

Sales Ratio Report Using Proposed 2022 Values

Sales Ratio Report Using Current 2021 Values

2020 SALES RATIOS BY NEIGHBORHOOD: COMMERCIAL

NB NAME

1	AMERICAN UNIVERSITY
2	ANACOSTIA
5	BRENTWOOD
6	BRIGHTWOOD
7	BROOKLAND
9	CAPITOL HILL
10	CENTRAL
11	CHEVY CHASE
12	CHILLUM
15	COLUMBIA HEIGHTS
16	CONGRESS HEIGHTS
18	DEANWOOD
19	ECKINGTON
20	FOGGY BOTTOM
25	GEORGETOWN
26	GLOVER PARK
29	KALORAMA
31	LEDROIT PARK
32	LILY PONDS
36	MOUNT PLEASANT
39	OLD CITY \#1
40	OLD CITY \#2
41	PALISADES
42	PETWORTH
43	RANDLE HEIGHTS
44	NOMA
46	SW WATERFRONT
48	SHEPHERD PARK
49	16TH STREET HEIGHTS
52	TRINIDAD
56	WOODRIDGE
73	WASHINGTON NAVY YARD

SALES AVE PRICE MED PRICE MEDIAN MEAN WEIGHTED
1 1,999,999 1,999,999 1,400, 000 1, 400, 000 2,925,000 2,925,000

950,000 950,000 1,675,000 1,675, 000 2,727,500 1,510, 000 3 35,109, 879 7,600,000 2,775,000 2,775,000 1,225,000 1,225,000

883,000 800,000 495,000 495,000
1,345,000 975,000
800,000 800,000
1,275,000 1,275,000
3,629,005 2,357,500
1,250,000 1,250,000
2,800,000 2,800,000
1,040,000 1,040,000
500,000 500,000
4,876,667 1,280,000
12,637,579 1,420, 000
4,341,858 2,100,000
3,500, 000 3,500,000
1,359,295 1,105,000
1,225,000 1,225,000
833,830 833,830
85,903,000 85903000 450,888 450,888
9,812,500 9,812,500
843,333 650,000
1,232,500 1,240,000
111075046111075046
$90.7 \quad 90.7$
90.7
71.7
48.3
$\begin{array}{lll}47.9 & 47.9 & 48.3 \\ 86.6 & 86.6 & 86.6 \\ 59.5 & 59.5 & 59.4\end{array}$
$59.5 \quad 59.5$
59.4
55.1

52.1	38.9	3	1	1.36
120.2	24.9	7	6	.88
72.1	.0	1	0	1.00

$\begin{array}{lll}72.1 & 72.1 & 72.1\end{array}$

$55.2 \quad 55.2$

$70.0 \quad 71.6$
98.898 .8

$73.2 \quad 71.6$

$50.9 \quad 50.9$
$92.5 \quad 92.5$
$74.0 \quad 76.1$
100.8101
$79.6 \quad 79.6$
$\begin{array}{ll}56.9 & 56.9 \\ 44.3 & 44.3\end{array}$
$\begin{array}{ll}44.3 & 44.3 \\ 75.2 & 78.3\end{array}$
$80.2 \quad 83.7$
$\begin{array}{lllll}79.3 & 83.6 & 73.8 & 25.9 & 12\end{array}$
$91.1 \quad 91.1$
$62.8 \quad 65.9$
$\begin{array}{ll}56.7 & 56.7\end{array}$
104.5104
$81.9 \quad 81.9$
$65.4 \quad 65.4$
$61.8 \quad 61.8$
$\begin{array}{ll}87.3 & 76.0 \\ 94.6 & 92.8\end{array}$
$94.6 \quad 92.8$
$73.5 \quad 73.5$

COD < 105 > 105
PRD

TOTALS:

| PROPERTY TYPE | SALES | AVE PRICE | MED PRICE | MEDIAN | MEAN | WEIGHTED | COD | <105 | >105 | PRD |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Commercial | 120 | $9,285,555$ | $1,555,000$ | 76.1 | 79.6 | 97.2 | 24.4 | 106 | 14 | .82 |

Sales Ratio Report Using Proposed 2022 Values

	NAME	SALES	AVE PRICE	MED	PRICE	MEDIAN	MEAN	WEIGHTED		< 105	> 105	PRD
1	AMERICAN UNIVERSITY	1	1,999,999	1,99	99,999	82.3	82.3	82.3	3 . 0	1	0	1.00
2	ANACOSTIA	1	1,400, 000	1,40	00, 000	74.4	74.4	74.4	4 . 0	1	0	1.00
5	BRENTWOOD	2	2,925,000	2,92	25, 000	64.0	64.0	66.6	27.5	2	0	. 96
6	BRIGHTWOOD	1	950,000		50, 000	86.9	86.9	86.9	. 0	1	0	1.00
7	BROOKLAND	2	1,675,000	1,67	75,000	60.4	60.4	60.3	312.8	2	0	1.00
9	CAPITOL HILL	4	2,727,500	1,51	10, 000	94.9	91.6	77.9	16.7	3	1	1.18
10	CENTRAL	13	35,109,879	7,60	00, 000	94.6	90.4	93.1	13.5	11	2	. 97
11	CHEVY CHASE	1	2,775,000	2,77	75,000	81.0	81.0	81.0	. 0	1	0	1.00
12	CHILLUM	2	1,225,000	1,22	25,000	82.9	82.9	85.1	18.5	2	0	. 97
15	COLUMBIA HEIGHTS	5	883,000		00, 000	77.2	75.2	74.8	12.9	5	0	1.00
16	CONGRESS HEIGHTS	2	495,000		95, 000	86.4	86.4	84.6	(14.8	2	0	1.02
18	DEANWOOD	5	1,345,000		75, 000	85.5	85.6	88.4	49.0	5	0	. 97
19	ECKINGTON	1	800,000		00, 000	41.8	41.8	41.8	8 . 0	1	0	1.00
20	FOGGY BOTTOM	1	1,275,000	1,27	75,000	92.5	92.5	92.5	5 . 0	1	0	1.00
25	GEORGETOWN	10	3,629,005	2,35	57,500	88.3	86.5	78.5	5.8	10	0	1.10
26	GLOVER PARK	1	1,250,000	1,25	50, 000	90.2	90.2	90.2	2 . 0	1	0	1.00
29	KALORAMA	1	2,800,000	2,80	00, 000	79.5	79.5	79.5	5 . 0	1	0	1.00
31	LEDROIT PARK	1	1,040,000	1, 04	40,000	57.7	57.7	57.7	7 . 0	1	0	1.00
32	LILY PONDS	1	500,000		00, 000	45.3	45.3	45.3	3.0	1	0	1.00
36	MOUNT PLEASANT	6	4,876,667	1,28	80, 000	67.0	72.6	67.0	13.0	6	0	1.08
39	OLD CITY \#1	19	12,637,579	1,42	20, 000	79.6	80.2	86.6	(15.5	18	1	. 93
	OLD CITY \#2	13	4,341,858	2,10	00, 000	81.4	86.1	83.4	4 17.2	12	1	1.03
41	PALISADES	1	3,500,000	3,50	00, 000	96.7	96.7	96.7	. 0	1	0	1.00
42	PETWORTH	11	1,359, 295	1,10	05, 000	81.2	80.0	79.2	213.2	11	0	1.01
43	RANDLE HEIGHTS	2	1,225, 000	1,22	25, 000	58.2	58.2	62.2	22.4	2	0	. 94
44	NOMA	1	833,830		33,830	104.0	104	104.0	. 0	1	0	1.00
46	SW WATERFRONT	1	85, 903, 000		903000	92.4	92.4	92.4	4 . 0	1	0	1.00
48	SHEPHERD PARK	1	450,888		50,888	89.7	89.7	89.7	7 . 0	1	0	1.00
49	16TH STREET HEIGHTS	2	9,812,500	9,81	12,500	89.0	89.0	95.6	68.9	2	0	. 93
52	TRINIDAD	3	843,333		50, 000	74.1	64.5	67.1	13.8	3	0	. 96
56	WOODRIDGE	4	1,232,500	1,24	40,000	87.6	89.4	90.1	17.4	4	0	. 99
73	WASHINGTON NAVY YARD	1	111075046	1110	075046	65.9	65.965 .9		. 0	1	0	1.00
TOTALS:												
	OPERTY TYPE SALES	AVE PR	RICE MED PR	RICE	MEDIA	AN MEAN	N WEI	IGHTED	COD <	105	> 105	PRD
	mmercial 120	9,285,	555 1,555,	, 000	82.0	81.5		86.315	15.9	115	5	. 94

TY *2022 Residential Single Family Overall Change by Assessment Neighborhood Area

TY *2022 Residential (Class 1) Base Change by Assessment Neighborhood Area

TY *2022 Commercial Change by DC Ward

TY *2022 Commercial (Class 2) Base Change by Assessment Neighborhood Area

[^0]: Where:
 RCN = Replacement Cost New
 Base Rate = \$ rate based on occupancy (use) code and construction class
 Section $_{n}=$ Each separate building or section of building
 Effective Area = Adjusted SF area of improvement
 Size Adjustment = Adjustment factor for deviation from base size
 MV = Multiplicative Variables

[^1]: illustration 10

[^2]: Illustration 12

[^3]: Add Income
 Delete Income

